Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

An Efficient and Stable Tin-Based Perovskite Solar Cells Passivated by Aminoguanidine Hydrochloride

Qingxia Fu^a, Xianglan Tang^a, Dengxue Li^{a,b}, Lu Huang^a, Shuqin Xiao^{a,b}, Yiwang Chen^{a,c}, Ting Hu^{*a,b}

^aCollege of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang

University, 999 Xuefu Avenue, Nanchang 330031, China

^bSchool of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China

^cInstitute of Advanced Scientific Research (iASR), Jiangxi Normal University, 99

Ziyang Avenue, Nanchang 330022, China

Figure S1. Energy-dispersive X-ray (EDS) spectroscopy mapping of Sn, I, F, and Cl in (a) pristine and (b) NH₂GACl incorporated perovskite film.

Figure S2. (a) XPS spectra of the perovskite films. (b) XPS spectra (Cl 2p) of the perovskite films with 0.02 mol, 0.05 mol and 0.10 mol NH_2GACI .

Figure S3. SEM images of the perovskite films with (a) 0.02 mol and (b) 0.10 mol NH₂GACl-doped on ITO/PEDOT:PSS layers.

Figure S4. AFM images of the perovskite films on ITO/PEDOT:PSS layers with various proportions of NH_2GACl additive: (a) pristine, (b) 0.02 mol, (c) 0.05 mol and (d) 0.10 mol, respectively.

Figure S5. (a) X-ray diffraction patterns and (b) the corresponding full width at half maximum diffraction peaks of the perovskite films with varying concentrations of NH₂GACl additive (0 mol, 0.02 mol, 0.05 mol and 0.10 mol).

Figure S6. (a, b) X-ray photoelectron spectra (Sn 3d) of the pristine and perovskite films modified with NH₂GACl. (c) The contact angles between perovskite films (the pristine or NH₂GACl-modified) and water.

Figure S7. 1H NMR spectra of NH_2GACl , perovskite and perovskite- NH_2GACl mixture solution in deuterated *N*, *N*-dimethylformamide-d₇ (DMF-d₇).

Figure S8. (a) Ultraviolet photoelectron spectroscopy (UPS) patterns and (b) UV-vis absorbance spectra of the pristine, 0.02 mol, 0.05 mol and 0.10 mol NH₂GACl-modified perovskite films.

Figure S9. A graphical representation of the device characteristics (20 devices).

Figure S10. Steady-state photocurrent (left) and stabilized PCE (right) of the perovskite devices measured at the maximum power point.

Figure S11. (a) V_{OC} and (b) J_{SC} of the perovskite solar cells without and with NH₂GACl additive measured under various illumination levels.

Figure S12. Stability of the pristine and NH₂GACl-modified perovskite solar cells in nitrogen at 25 °C without encapsulation. (a) Normalized V_{OC} . (b) Normalized J_{SC} . (c) Normalized FF.

Figure S13. Stability of the pristine and NH₂GACl-modified perovskite solar cells under relative humidity (RH) 60% without encapsulation. (a) Normalized PCE, (b)Normalized V_{OC} , (c) Normalized J_{SC} , (d) Normalized FF.

Devices	$J_{\rm SC}$ (mA cm ⁻²)	V _{OC} (V)	FF (%)	PCE (%)
pristine	15.98	0.48	64.09	4.92
0.02 mol NH ₂ GACl	18.88	0.50	67.89	6.42
0.05 mol NH ₂ GACl	19.65	0.54	68.84	7.30
0.10 mol NH ₂ GACl	14.52	0.45	63.48	4.19

Table S1. Photovoltaic parameters of the perovskite solar cells with differentconcentrations of NH_2GACI doped in precursor solution.

device active areas (cm ²)	РСЕ (%)	Ref.
0.04	12.40	1
0.09	10.1	2
0.0222	9.6	3
0.04	9.0	4
0.04	7.3	This work

Table S2 The different device active areas of Sn-perovskite solar cells in the previous

 literatures and this work.

- 1. X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang, W. Zhou, C. Wang, P. Cheng, Q. Chen, L. Chen and Z. Ning, *Nat. Commun.*, 2020, DOI: 10.1038/s41467-020-15078-2.
- 2. T. Wu, X. Liu, X. He, Y. Wang, X. Meng, T. Noda, X. Yang and L. Han, *Sci. China Chem.*, 2020, **63**, 107-115.
- 3. E. Jokar, C.-H. Chien, C.-M. Tsai, A. Fathi and E. W.-G. Diau, *Adv. Mater.*, 2019, **31**, 1804835.
- S. Shao, J. Liu, G. Portale, H.-H. Fang, G. R. Blake, G. H. ten Brink, L. J. A. Koster and M. A. Loi, *Adv. Energy Mater.*, 2018, 8, 1702019.