Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Color-Tunable Upconversion Luminescence and Prolonged Eu³⁺ Fluorescence Lifetime in Fluoride KCdF₃:Yb³⁺,Mn²⁺,Eu³⁺ via Controllable and Efficient Energy Transfer

Xinxin Han,^a Enhai Song,^{*a} Weibin Chen,^{ab} Yayun Zhou^a and Qinyuan Zhang^{*a} ^aState Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory

of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China

^bGuangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.

*Corresponding author E-mail: <u>msehsong@scut.edu.cn</u>(Enhai Song); <u>qyzhang@scut.edu.cn</u>(Qinyuan Zhang).

formula	KCdF ₃
space group	Pbnm(62)
a (Å)	6.11845(7)
b (Å)	6.12981(7)
c (Å)	8.68419(9)
α=β=γ (°)	90
Z	4
V (Å ³)	325.700(6)
R _{wp} (%)	7.87
R _p (%)	5.36
χ^2	3.709

Table S1 Rietveld refinement data for $KCdF_3$

Note: The refinements are stable and give low R-factors.

Table	e S2	CIE c	hromaticity	coordinates f	or KCdF₃	3: 2%Yb 3+	, 5%Mn²	', <i>x</i> Eu³⁺	(<i>x</i> =0-4%)
-------	------	-------	-------------	---------------	----------	-------------------	---------	------------------	------------------	---

Serial number	Eu ³⁺ content (<i>x</i>)	CIE (<i>X,Y</i>)
1	0%	(0.4669,0.5287)
2	0.01%	(0.4670,0.5284)
3	0.1%	(0.4881,0.5075)
4	0.5%	(0.5448,0.4513)
5	1%	(0.5790,0.4179)
6	2%	(0.6025,0.3953)
7	3%	(0.6105,0.3877)
8	4%	(0.6096,0.3875)

Table S3 UC emission lifetimes of Eu^{3+} (monitoring the 5D_0 energy level)

System	UC lifetime (ms)	Reference
LiNbO ₃ :Er ³⁺ ,Eu ³⁺	0.02	A. H. Li, et.al, 2009 ¹
NaGdF ₄ :Yb/Tm@NaGdF ₄ :Eu@NaYF	9.75	Q. Su, et.al, 2012 ²
4		
NaYF ₄ : Yb ³⁺ ,Mn ²⁺ ,Eu ³⁺	3.83	
NaYF ₄ : Yb ³⁺ ,Mn ²⁺ ,Eu ³⁺ @NaYF ₄	5.96	7 Wang at al 2014^3
NaLuF ₄ : Yb ³⁺ ,Mn ²⁺ ,Eu ³⁺	3.99	2. Wally, et. al, 2014
NaLuF ₄ : Yb ³⁺ ,Mn ²⁺ ,Eu ³⁺ @NaLuF ₄	5.63	
REPO ₄ :Yb ³⁺ ,Tb ³⁺ ,Eu ³⁺ (RE=Y,La,Gd,Lu	1.51-2.36	A. Tymiński, et.al, 2016 ⁴
)		
CaF ₂ :Yb ³⁺ ,Eu ³⁺	1.71	X. Liu, et.al, 2017 ⁵
CaF ₂ :Yb ³⁺ ,Eu ³⁺	1.85	N. Rakov, et.al, 2019 ⁶
KCdF ₃ : Yb ³⁺ ,Mn ²⁺ ,Eu ³⁺	26.06	This work

Sustem	Excitation	Lifetime	Deference
System	wavelength	(ms)	Reference
Y ₂ O ₃ :Eu ³⁺	266 nm	1.08	X. Wei, et al, 2010. ⁷
ZrO ₂ :Eu ³⁺	394 nm	2.44	S. D. Meetei, et al, 2014. ⁸
Gd ₂ O ₃ :Eu ³⁺	258 nm	2.20	L. Liu, et al, 2007. ⁹
Y ₂ O ₃ :Eu ³⁺	241 nm	2.34	
Y ₂ O ₂ SO ₄ :Eu ³⁺	270 nm	1.49	J. Liao, et al, 2015. ¹⁰
Y ₂ O ₂ S:Eu ³⁺	261 nm	0.73	
Y ₂ O ₂ S:Eu ³⁺	320 nm	0.16-0.68	J. Thirumalai, et al, 2011. ¹¹
Gd ₂ O ₂ S:Eu,Yb	460 nm	0.17-0.55	C. D. Angel-Olarte, et al, 2019. ¹²
Gd ₂ O ₂ S:Eu ³⁺	329 nm	0.95	B. Qian, et al, 2019. ¹³
CaSO ₄ :Dy ³⁺ ,Eu ³⁺	410 nm	1.90-2.71	S. Das, et al,2012. ¹⁴
Y ₃ Al ₅ O ₁₂ :Eu ³⁺ ,Yb ³⁺	25450 cm ⁻¹	4.6	R. Martín-Rodríguez, et al,
Gd ₃ Ga ₅ O ₁₂ :Eu ³⁺ ,Yb ³⁺	25450 cm ⁻¹	4.0	2009.15
Y ₃ Al ₅ O ₁₂ :Eu ³⁺	393.5 nm	5.36-7.14	I.E. Kolesnikov, et al, 2014. ¹⁶
CaYAl ₃ O ₇ :Eu ³⁺	260 nm	2.16	S. P. Tiwari, et al, 2017. ¹⁷
Na ₂ MgSiO ₄ :Eu ³⁺	393.5	1.51-2.15	H. Tang, et al, 2017. ¹⁸
Y ₂ MoSiO ₈ :Eu ³⁺	395 nm	1.06	G. Dong, et al,2019. ¹⁹
Ca ₃ Mg ₃ (PO ₄) ₄ :Eu ²⁺ ,Eu ³⁺	325 nm	1.90	G. B. Nair, et al, 2020. ²⁰
Pb ₃ Bi(PO ₄) ₃ :Eu ³⁺	394 nm	2.247	B. Yu, et al, 2020. ²¹
La ₂ Ti ₂ O ₇ : Eu ³⁺ ,Er ³⁺	393 nm	0.67-0.89	F. Szczepanski, et al, 2020. ²²
YVO ₄ :Eu ³⁺	300 nm	0.46	N. S. Singh, et al, 2009. ²³
YNbO ₄ :Eu ³⁺	465 nm	0.68	L. R. Đačanin, et al, 2014. ²⁴
Na ₂ Ca ₂ Nb ₄ O ₁₃ :Eu ³⁺	395 nm	0.43-0.74	R. Gao, et al, 2019. ²⁵
Ba ₂ LaNbO ₆ :Eu ³⁺		3.04	
BaCaLaNbO ₆ :Eu ³⁺	250-300 nm	1.74	R. Phatak, et al, 2020. ²⁶
BaMgLaNbO ₆ :Eu ³⁺		1.04	
CaMoO ₄ :Eu ³⁺ (,Na ⁺)	275 nm	0.35-0.56	A. I. Becerro, et al, 2018. ²⁷
La ₂ Mo ₂ O ₉ :Eu ³⁺	351 nm	0.53	Y. Hua, et al, 2019. ²⁸
Sr ₃ MoO ₆ :Eu ³⁺	353 nm	0.28	Y. Hua, et al, 2019. ²⁹
$La_3Ga_5MO_{14}$: Eu^{3+} (M=Zr, Hf, Sn)	300/394 nm	1.10	A. Reinhardt, et al, 2019. ³⁰
α -La ₂ W ₂ O ₉ :Eu ³⁺	395 nm	0.64	Q. Cheng, et al, 2019. ³¹
NaGd(WO ₄) ₂	395 nm	0.12-1.11	W. Zhang, et al, 2020. ³²
Eu ³⁺ -doped CdO–Al ₂ O ₃ –SiO ₂ glass	266 nm	1.78-2.52	Y. Cong, et al, 2008. ³³
Eu ³⁺ ,Yb ³⁺ -doped SiO ₂ -PbO-PbF ₂ -CdF ₂ glass	533 nm	1.55	P. A. Loiko, et al, 2014. ³⁴
SiO ₂ -Al ₂ O ₃ -NaF-YF ₃ -TbF ₃ -EuF ₃ glass	202 mm	2.74	D Char at al 2015^{35}
Glass ceramic	393 nm	3.28	D. Chen, et al, 2015.55
YNbO ₄ :Eu ³⁺ ,Yb ³⁺ doped Li ₂ O-Al ₂ O ₃ -SiO ₂		0.00	
glass	532 nm	0.69	P. A. Loiko, et al, 2016. ³⁶
Glass ceramics (after heat treatment)		0.14-0.20	
Eu^{3+} doped B_2O_3 -Zn F_2 -Ba F_2 glass	393 nm	1.40-2.64	R. J. Amjad, et al, 2017. ³⁷
LaF ₃ :Eu ³⁺	396 nm	10.89	P. Huang, et al, 2020. ³⁸

Table S4 Lifetimes of the ${}^5\text{D}_0$ energy level of Eu^{3+} in other reported materials

-			
silica glass ceramics containing LaF ₃ :Eu ³⁺		6.48	
BaGe ₄ O ₉ :Eu ³⁺	394 nm	2.25	C. Ji, et al,2019. ³⁹
NaGdF ₄ :Yb,Tm,Eu	27 2 pm	4.50	D V Live et al. 2010 ⁴⁰
NaGdF ₄ :Yb,Tm@NaGdF4:Eu	273 1111	5.70	B. F. Liu, et al, 2010.
GdF ₃ :Eu ³⁺	396 nm	4.80-11.80	X. Zhang, et al, 2011.41
REOF:Eu ³⁺ (RE=Y,La,Gd)	266 nm	0.88-1.23	T. Grzyb, et al, 2013.42
Sr ₂ LnF ₇ (Ln=La,Gd)	392/272 nm	3.90-7.60	M. Runowski, et al, 2014.43
	466.1/526/525.2	6.90/7.70/9.	X_{0} Oin at al. 2016 44
	nm	80	f. Qill, et al, 2016.
NaBiF ₄ :Eu ³⁺	394 nm	1.61-4.96	P. Du, et al,2018.45
Na ₃ GaF ₆ :Eu ³⁺	395 nm	0.06	D. Yang, et al, 2018.46
KCdF ₃ : Yb ³⁺ ,Mn ²⁺ ,Eu ³⁺	256 nm	34.47	This work

Serial number	Power (mW)	CIE (<i>X,Y</i>)
1	94	(0.5460,0.4518)
2	153	(0.5459,0.4519)
3	212	(0.5471,0.4507)
4	270	(0.5437,0.4540)
5	329	(0.5420,0.4556)
6	387	(0.5407,0.4568)
7	446	(0.5399,0.4575)

Table S5 Pump power dependent CIE chromaticity coordinates for KCdF₃:2%Yb³⁺, 5%Mn²⁺, 0.5%Eu³⁺

Table S6 Temperature dependent CIE chromaticity coordinates for KCdF₃:2%Yb³⁺, 5%Mn²⁺, 0.5%Eu³⁺

Serial number	Temperature (K)	CIE (<i>X,Y</i>)
1	RT	(0.5542,0.4436)
2	323	(0.5523,0.4453)
3	348	(0.5486,0.4487)
4	373	(0.5443,0.4527)
5	398	(0.5382,0.4583)
6	423	(0.5325,0.4633)
7	448	(0.5255,0.4696)
8	473	(0.5249,0.4695)
9	498	(0.5204,0.4727)
10	523	(0.5137,0.4770)
11	548	(0.5119,0.4769)
12	573	(0.5070,0.4779)

Fig. S1 The UC rising edges of sample $KCdF_3$: $2\%Yb^{3+}$, $5\%Mn^{2+}$, $0.5\%Eu^{3+}$.

Fig. S2 (a) Pump power dependent UC emission spectra of $KCdF_3:2\%Yb^{3+}$, $5\%Mn^{2+}$, $0.5\%Eu^{3+}$. (b) Chromaticity shift (ΔE) of $KCdF_3:2\%Yb^{3+}$, $5\%Mn^{2+}$, $0.5\%Eu^{3+}$ in the power range of 94-446 mW. The inset is the CIE chromaticity coordinates.

The chromaticity shift (ΔE) used to describe the color stability is:

$$\Delta E = \sqrt{(u'_p - u'_0)^2 + (v'_p - v'_0)^2 + (w'_p - w'_0)^2}$$

Where $u\mathbb{P}=4x/(3-2x+12y)$, $v\mathbb{P}=9y/(3-2x+12y)$ and $w\mathbb{P}=1-u\mathbb{P}-v\mathbb{P}$. *x* and *y* are the chromaticity coordinates in CIE

1931, u and v are the chromaticity coordinates in the u u v uniform color space. 0 and P represent the initial power of 93 mW and given power, respectively.

The small chromaticity shift (ΔE) values indicate the as-prepared sample KCdF₃:2%Yb³⁺, 5%Mn²⁺, 0.5%Eu³⁺ have excellent chromaticity stability with varying pump power.

Fig. S3 TG-DSC curves of $KCdF_3:2\%Yb^{3+},5\%Mn^{2+}$.

Fig. S4 Temperature dependent CIE chromaticity coordinates for $KCdF_3:2\%Yb^{3+}$, 5%Mn²⁺, 0.5%Eu³⁺. The serial numbers "1-12" represent the increasing temperature.

References:

- 1 A. H. Li, Z. R. Zheng, T. Q. Lü, Q. Lü and W. L. Liu, Opt. Express, 2009, 17, 3878.
- 2 Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C. Chen, R. Liu, X. Chen, F. Wang and X. Liu, J. Am. Chem. Soc., 2012, 134, 20849.
- 3 Z. Wang, J. Feng, S. Song, Z. Sun, S. Yao, X. Ge, M. Pang and H. Zhang, J. Mater. Chem. C, 2014, 2, 9004.
- 4 A. Tymiński and T. Grzyb, J. Lumin., 2016, **181**, 411.
- 5 X. Liu, Y. Li, T. Aidilibike, J. Guo, W. Di and W. Qin, J. Lumin., 2017, 185, 247.
- 6 N. Rakov, S. C. Duarte and G. S. Macie, J. Lumin., 2019, 214, 116561.
- 7 X. WEI, J. ZHAO, W. ZHANG, Y. LI and M. YIN, J. Rare Earth., 2010, 28, 166.
- 8 S. D. Meetei and S. D. Singh, J. Lumin., 2014, 147, 328.
- 9 L. Liu and X. Chen, *Nanotechnology*, 2007, **18**, 255704.
- 10 J. Lian, H. Qin, P. Liang and F. Liu, Solid State Sci., 2015, 48, 147.
- 11 J. Thirumalai, R. Chandramohan, S. Valanarasu, T. A. Vijayan and S. Ezhilvizhian, *Micro Nano Lett.*, 2011, 8, 614.
- 12 C. D. Angel-Olarte, L. Hernández-Adame, A. Mendez-Blas and G. Palestino, J. Alloy. Compd., 2019, 787, 1032.
- 13 B. Qian, D. Wang, H. Wang, H. Zou, Y. Song, X. Zhou and Y. Sheng, J. Am. Ceram. Soc., 2019, 103, 356.
- 14 S. Das, A. Amarnath Reddy and G. Vijaya Prakash, Ceram. Int., 2012, 38, 5769.
- 15 R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini and F. Piccinelli, J. Phys. Chem. C, 2009, 113, 12195.
- 16 I. E. Kolesnikov, D. V. Tolstikova, A. V. Kurochkin, A. A. Manshina and M. D. Mikhailov, Opt. Mater., 2014, 37, 306.
- 17 S. P. Tiwari, A. Kumar, S. Singh and K. Kumar, *Vacuum*, 2017, **146**, 537.
- 18 H. Tang, R. Yang and Y. Huang, J. Alloy. Compd., 2017, 714, 263.
- 19 G. Dong, J. Zhao, M. Li, L. Guan and X. Li, *Ceram. Int.*, 2019, **45**, 2653.
- 20 G. B. Nair, A. Kumar, S. J. Dhoble and H. C. Swart, Mater. Res. Bull., 2020, 122, 110644.
- 21 B. Yu, Y. Li, Y. Wang and L. Geng, J. Lumin., 2020, **220**, 116978.

- 22 F. Szczepanski, A. Bayart, A. Katelnikovas, J. Blach, J. Rousseau and S. Saitzek, J. Alloy. Compd., 2020, 826, 154157.
- 23 N. S. Singh, R. S. Ningthoujam, M. N. Luwang, S. D. Singh and R. K. Vatsa, Chem. Phys. Lett., 2009, 480, 237.
- L. R. Đačanin, M. D. Dramićanin, S. R. LukićPetrović, D. M. Petrović, M. G. Nikolić, T. B. Ivetić and I. O. Gúth, *Ceram. Int.*, 2014, **40**, 8281.
- 25 R. Cao, H. Xiao, F. Zhang, Z. Luo, T. Chen, W. Li, P. Liu and G. Zheng, J. Lumin., 2019, 208, 350.
- 26 R. Phatak, N. Pathak, S. Muhammed, A. Das and S. K. Sali, J. Am. Ceram. Soc., 2020, 103, 2617.
- A. I. Becerro, M. Allix, M. Laguna, D. González-Mancebo, C. Genevois, A. Caballero, G. Lozano, N. O. Núñez and M. Ocaña, J.Mater. Chem. C, 2018, 10, 12830.
- 28 Y. Hua and J. S. Yu, J. Alloy. Compd., 2019, **783**, 969.
- 29 Y. Hua, S. K. Hussain and J. S. Yu, Ceram. Int., 2019, 45, 18604.
- 30 A. Reinhardt, A. Zych, I. Köhler and B. Albert, J. Lumin., 2019, 218, 116833.
- 31 Q. Cheng, F. Ren, Q. Lin, H. Tong and X. Miao, J. Alloy. Compd., 2019, 722, 905.
- 32 W. Zhang, R. Zhang, S. Yang, R. Wang, L. Na and R. Hua, Mater. Res. Bull., 2020, 122, 110689.
- 33 Y. Cong, B. Li, B. Lei, X. Wang, C. Liu, J. Liu and W. Li, J. Lumin., 2008, 128, 105.
- 34 P. A. Loiko, G. E. Rachkovskaya, G. B. Zakharevich, A. A. Kornienko, E. B. Dunina, A. S. Yasukevich and K. V. Yumashev, J. Non-Cryst. Solids, 2014, 392-393, 39.
- 35 D. Chen, Z. Wang, Y. Zhou, P. Huang and Z. Ji, J. Alloy. Compd., 2015, 646, 339.
- P. A. Loiko, O. S. Dymshits, I. P. Alekseeva, A. A. Zhilin, M. Y. Tsenter, E. V. Vilejshikova, K. V. Bogdanov, X. Mateos and K.
 V. Yumashev, J. Lumin., 2016, 179, 64.
- 37 R. J. Amjad, W. Santos, C. Jacinto and M. R. Dousti, J. Lumin., 2017, 192, 827.
- 38 P. Huang, P. Luo, B. Zhou, L. Wang and J. Wan, *Mater. Lett.*, 2020, **271**, 127764.
- 39 C. Ji, Z. Huang, X. Tian, W. Xie, J. Wen, H. He, C. Zhou and T. Zeng, *Dyes Pigments*, 2019, **160**, 772.
- 40 B. Y. Liu, D. Tu, H. Zhu, R. Li, W. Luo and X. Chen, Adv. Mater., 2010, 22, 3266.
- 41 X. Zhang, T. Hayakawa, M. Nogami and Y. Ishikawa, J. Alloy. Compd., 2011, 509, 2076.
- 42 T. Grzyb, W. Mariusz, T. Pędziński and S. Lis, Opt. Mater., 2013, 35, 2226.
- 43 M. Runowski, S. Balabhadra and S. Lis, J. Rare Earth., 2014, **32**, 242.
- 44 Y. Qin, X. Wei, J. Wen, Y. Chen and M. Yin, J. Nanosci. Nanotechno., 2016, 16, 3873.
- 45 P. Du, X. Huang and S. J. Yu, *Chem. Eng. J.*, 2018, **337**, 91.
- 46 D. Yang, L. Liao, Q. Guo, L. Wang, L. Mei, H. Liu and T. Zhou, J. Lumin., 2018, 203, 385.