Supporting Information

Negative-Pressure Enhanced Ferroelectricity and Piezoelectricity in *Lead-free* BaTiO₃ Ferroelectric Nanocomposite Films

Xiyuan Zhang,^a Ruixing Xu,^a Xingyao Gao,^b Yanda Ji,^a Fengjiao Qian,^a Jiyu Fan,^{*,a} Haiyan Wang,^b Weiwei Li^{*,c} and Hao Yang^{*,a,d}

^aCollege of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211 106, P. R. China. E-mail: <u>jiyufan@nuaa.edu.cn</u>, <u>yanghao@nuaa.edu.cn</u>

^bSchool of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA

^cDepartment of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom. E-mail: <u>wl337@cam.ac.uk</u>

^dKey Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China

Figure S1. (a) Left panel: cross-sectional high-resolution STEM image along the interface between B (BTO) and S (Sm_2O_3). The BTO (dark contrast phase due to lower Z number) and the Sm_2O_3 (bright contrast phase due to higher Z number) are phase-separated. The inset shows the fast Fourier transformed image. Right panel: the corresponding Fourier-filtered image without periodic misfit dislocations (the dashed red lines guide the interfaces). (b) The selected area diffraction (SAD) image. (c)

Plain-view STEM image. A distinct Sm_2O_3 (bright contrast phase due to higher Z number, highlighted by red dash circles) nanopillar in BTO (dark contrast phase due to lower Z number) matrix structure of the thin film with a clear phase separation. The inset is a schematic diagram of VAN structure. (d) The corresponding fast Fourier transformed (FFT) filtered image of Figure c showing without periodic misfit dislocations along the interface between BTO and Sm_2O_3 highlighted by red dash circles. The inset is a schematic diagram of VAN structure.

Figure S2. Selected area diffraction (SAD) pattern of $BaTiO_3$ in $BaTiO_3:Sm_2O_3$ nanocomposite films. The separated diffraction dots might result from the distortion of the $BaTiO_3$ lattices, which proves the potential monoclinic structure of $BaTiO_3$.

Figure S3. X-ray reciprocal space map (RSM) of (420) Bragg reflections of Nb:SrTiO₃ and BaTiO₃ at Phi=218.3° for plain BaTiO₃ 100 nm film.

Figure S4. Zoom-in view of temperature dependence of lattice parameter d_{222} in 500nm-thick BaTiO₃:Sm₂O₃ nanocomposite films for showing two distinct regimes separated by a kink in the lattice parameter clearly.

Figure S5. (a) Ferroelectric hysteresis loop and (b) Piezoelectric coefficient and phase hysteresis loops for plain BaTiO₃ 100 nm film measured at 25 °C.

Figure S6. Room-temperature butterfly loops obtained before and after the Simple Harmonic Oscillator (SHO) fitting.