Supplementary information for

Abnormal bandgap enlargement made promising mid-infrared nonlinear optical material Rb₂CdBrI₃ with ultrahigh laser damage threshold

Qi Wu^{a*}, Xian Liu^a, Yeshuang Du^a, Chunlin Teng^a, Fei Liang^{b*}

a. College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China

b. State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China

Abstract: Low laser damage threshold of commercial infrared nonlinear optical materials is the main bottleneck to hinder their high-power coherent source applications. Here, a new compound Rb₂CdBrI₃ was successfully synthesized in a controlled manner by rational halogen substitution. It features zero-dimensional [CdBrI₃]²⁻ tetrahedra and inserted Rb⁺ cations as the counter cations. Contrast to isomorphic Rb₂CdBr₂I₂, Rb₂CdBrI₃ exhibits an anomalously enlarged bandgap of 4.01 eV and unprecedented high laser damage threshold up to 46 times that of AgGaS₂. Theoretical calculations elaborate that the abnormal bandgap attributes to weak conduction band dispersion from reduced net dipole moment and enhanced halogen s-p orbital mixing when Br is replaced by I. This work not only promotes Rb₂CdBrI₃ as a promising infrared nonlinear converter, but also supplies new modulating viewpoints for band-sensitive optoelectronic devices, such as hybrid perovskite solar cells with mixed halogen.

Contents

Table S1. Selected bond lengths (Å) for Rb₂CdBrI_{3.}

Table S2. Selected bond angles (°) for Rb₂CdBrI_{3.}

Table S3. The proportion of element in Rb₂CdBrI₃ by EDX

Table S4. Dipole moment calculation of Rb₂CdBrI₃ and Rb₂CdBr₂I₂

Figure S1. Photograph of Rb₂CdBrI₃ crystal.

Figure S2. X-ray diffraction powder patterns for Rb₂CdBrI₃: Calculated and experimental.

Figure S3. The EDS spectrum of Rb₂CdBrI₃.

Figure S4. The infrared spectrum of Rb₂CdBrI₃

Figure S5. (a) The simulated lowest unoccupied molecular orbitals (LUMO) of (a) $Rb_2CdBr_2I_2$ and (b) Rb_2CdBrI_3 .

bond	lengths (Å)	bond	lengths (Å)
Cd1-I1	2.741(3)	Cd1 ¹ -I2	2.768(15)
Cd1 ¹ -I1	2.741(3)	Cd1-Br1	2.667(3)
Cd1-I2	2.768(15)		

Table S1. Selected bond lengths (Å) for Rb₂CdBrI₃

¹3/2-X,+Y,+Z; ²+X,-1/2+Y,-1/2+Z; ³1/2+X,1/2-Y,1/2+Z; ⁴+X,-1/2+Y,1/2+Z; ⁵+X,+Y,-1+Z; ⁶3/2-X,+Y,-1+Z; ⁷2-X,1/2-Y,-1/2+Z; ⁸1/2+X,1-Y,+Z; ⁹1/2+X,1/2-Y,-1/2+Z; ¹⁰1-X,1-Y,+Z

Table S2. Se	elected bond	l angles (°)) for Rb ₂ CdBrI ₃
--------------	--------------	--------------	--

bond angles (°) bond angles (°)

I1-Cd1-I2	111.93(6)	Br1-Cd1I1	106.73(12)
I1-Cd1I2 ¹	111.93(6)	Br1-Cd1I2 ¹	108.03(6)
I2 ¹ -Cd1I2	109.99(8)	Br1-Cd1I2	108.03(6)

Table S3. The proportion of element in Rb₂CdBrI₃ by EDS

Element	Experimental values		
	Weight/%	Atomic weight/%	
Rb	22.10	27.26	
Cd	17.88	16.77	
Br	12.51	16.50	
Ι	47.51	39.47	

Table S4. Dipole moment calculation of Rb_2CdBrI_3 and $Rb_2CdBr_2I_2$

	vectors (x) (Debye)	vectors (y) (Debye)	vectors (z) (Debye)	Vectors (total) (Debye)
Rb ₂ CdBrI ₃	0	-0.0004	0.559	0.559
Rb ₂ CdBr ₂ I ₂	0	-0.09	-1.532	1.535

Figure S1. Photograph of Rb₂CdBrI₃ crystal

Figure S2. Simulated and measured powder X-ray diffraction patterns of

Rb₂CdBrI₃

Figure S3. The EDS spectrum of Rb₂CdBrI₃

Figure S4. The infrared spectrum of Rb₂CdBrI₃

Figure S5. The simulated lowest unoccupied molecular orbitals (LUMO) of (a) $Rb_2CdBr_2I_2$ and (b) Rb_2CdBrI_3