Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Title

Synergy effect of co-doping Sc and Y in Sb₂Te₃ for phase-change memory

Authors

Shuwei Hu^{a,b}, Jiankai Xiao^a, Jian Zhou^{a,b}, Stephen R. Elliott^{a,b,c}, Zhimei Sun^{*a,b}

Institutions

^a School of Materials Science and Engineering, Beihang University, Beijing 100191, China

^b Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China

^c Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom

Corresponding Author

E-mail address: zmsun@buaa.edu.cn (Zhimei Sun).

Keywords

Ab initio calculations, ab initio molecular dynamics, co-doping, Sb₂Te₃, phase-change materials

1. Calculation method for the formation energy of Sc and Y co-doped Sb₂Te₃.

The formation energy for Sc and Y co-doping is calculated as [1]:

$$E^{f}[X] = E_{tot}[X] - E_{tot}[bulk] - \sum_{i} n_{i}\mu_{i}, \qquad \text{Eq. (S1)}$$

where $E_{tot}[X]$ and $E_{tot}[bulk]$ are the total energies of a supercell with and without Y and Sc doping, respectively, n_i indicates the number of atoms of type *i* (host atoms or impurity atoms) that have been added to $(n_i > 0)$ or removed from $(n_i < 0)$ the supercell when the doping is created, and μ_i are the corresponding chemical potentials of these species, which can be Te-rich or Te-poor (or anything in between), depending on the experimental growth conditions. The chemical potentials of Sb and Te are related by the following expression: $2\mu_{Sb} + 3\mu_{Te} = E_{tot}[Sb_2Te_3]$. Considering the case of the X_2Te_3 compound (X = Sc/Y), the chemical potentials of X and Te are related by the following expression: $2\mu_X + 3\mu_{Te} = E_{tot}[X_2Te_3]$. Under the extreme Te-rich condition, the chemical potential of Te is subject to an upper bound, $\mu_{Te}^{max} = \mu_{Te}[bulk]$. The upper limit on μ_{Te}^{max} then results in lower limits on μ_{Sb} and μ_X :

$$\mu_{\rm Sb}^{\rm min} = \left(E_{\rm tot} \left[{\rm Sb}_{2}{\rm Te}_{3}\right] - 3\mu_{\rm Te} \left[{\rm bulk}\right]\right)/2 \qquad {\rm Eq. (S2)}$$

$$\mu_{X}^{\min} = \left(E_{tot}[X_{2}Te_{3}] - 3\mu_{Te}[bulk]\right)/2.$$
 Eq. (S3)

Similarly, under the extreme Te-poor condition, the chemical potential of Te is subject to a lower limit:

$$\mu_{\text{Te}}^{\min} = \max \begin{cases} \left(\mathsf{E}_{\text{tot}} \left[\mathsf{Sb}_2 \mathsf{Te}_3 \right] - 2\mu_{Sb} \left[\mathsf{bulk} \right] \right) / 3 \\ \left(\mathsf{E}_{\text{tot}} \left[X_2 \mathsf{Te}_3 \right] - 2\mu_X \left[\mathsf{bulk} \right] \right) / 3 \end{cases}$$
 Eq. (S4)

which results in upper limits on $\mu_{\rm Sb}$ and $\mu_{\rm X}$:

$$\mu_{\rm Sb}^{\rm max} = \left(E_{\rm tot} \left[{\rm Sb}_2 {\rm Te}_3\right] - 3\mu_{\rm Te}^{\rm min}\right)/2 \qquad \qquad {\rm Eq. (S5)}$$

$$\mu_{X}^{\max} = (E_{tot}[X_{2}Te_{3}] - 3\mu_{Te}^{\min})/2$$
 Eq. (S6)

In our calculations, the trigonal phase of Sb and Te, and the hexagonal phases of Y/Sc were used as the reference elemental bulk phases for the chemical potentials.

The $E_{tot}[Sb_2Te_3]$ and $E_{tot}[X_2Te_3]$ values in Eq. (A.2-6) are the total energies of the primitive cell of Sb₂Te₃ and X_2Te_3 (X = Sc/Y), respectively.

2. Doping modes and optimal configurations of Sc and Y co-doping Sb₂Te₃.

Figure S1. The calculated formation energies for Sc and Y occupying various positions, referred to as X_{Sb} , X_{Te1} , X_{Te2} and X_i in Sb₂Te₃ (X = Sc/Y).

Figure S2. The configurations with the lowest total energy for $Sc_{x_1}Y_{x_2}Sb_{2-x_1-x_2}Te_3$, where: (a) $x_1=0.083$, $x_2=0.167$; (b) $x_1=0.167$, $x_2=0.083$; (c) $x_1=0.083$, $x_2=0.250$; (d) $x_1=0.167$, $x_2=0.167$; (e) $x_1=0.250$, $x_2=0.083$.