Supporting Information

Enhanced Stability and Performance of Light-Emitting Diodes Based on *in Situ* Fabricated FAPbBr₃ Nanocrystals via Ligand Compensation with *n*-Octylphosphonic Acid

Yanan Wu,^a Lihui Liu,^a Wei Wang,^a Wenzhu Zhang,^a Hongtao Yu,^a Jie Qian,^a Yanfeng Chen,^a Wei Shen,^a Shiqi Sui,^b Zhengtao Deng,^b Shufen Chen,^{ac*} and Wei Huang^{ac*}

^aKey Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China

^bDepartment of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University (NJU), 163 Xianlin Avenue, Nanjing 210093, China

^cInstitute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi' an 710072, Shaanxi, China

*Corresponding Author: iamsfchen@njupt.edu.cn (S. Chen) and provost@nwpu.edu.cn (W. Huang)

Fig. S1 (a, b) C 1s XPS spectra, (c, d) N 1s XPS spectra, and (e, f) Br 3d XPS spectra of pristine and OPA (2 mg/mL) added FAPbBr₃ PNCs films.

Table. S1 The fluorescence intensity of the modified PNCs films with different concentrations of OPA recorded at every six hours.

OPA (mg/mL)	0 h	6 h	12 h	18 h
0	100%	57.0%	41.4%	15.6%
1	100%	64.2%	53.6%	35.8%
2	100%	82.3%	71.9%	65.0%
3	100%	76.8%	65.4%	54.7%

Table. S2 Relevant parameters extracted from the TRPL curves of all perovskite PNCs films with various concentrations of OPA.

OPA (mg/mL)	$\tau_1(ns)$	A ₁ (%)	$\tau_2(ns)$	A ₂ (%)	χ²	$\tau_{avg}(ns)$
0	19.32 ± 0.32	51.26%	66.79 ± 0.15	48.74%	1.166	42.46 ± 0.10
1	25.88 ± 0.16	49.84%	71.21 ± 0.12	50.16%	1.108	48.61 ± 0.23
2	24.91 ± 0.13	40.18%	102.74 ± 0.11	59.82%	1.022	71.46 ± 0.19
3	28.43 ± 0.15	43.21%	91.54 ± 0.16	56.79%	1.031	64.27 ± 0.11

Fig. S2 SEM images of OPA-FAPbBr₃ PNCs films with (a) 0 mg/mL, (b) 1 mg/mL, (c) 2 mg/mL, and (d) 3 mg/mL concentrations of OPA. (Scale bar: 500 nm).

Fig. S3 Operation stability of PeLEDs with various concentrations of OPA.

Table. S3 Summarization of the reported representation	ve PeLEDs' lifetir	imes. T_{50} is defined as t	he degradation time
corresponding to 50% of the initial luminance, respect	ively.		

	Emission layer	Device Structure	Publication year	Lifetime	Ref
	FAPbBr ₃ NCs	ITO/PEDOT:PSS/FAPbBr ₃ /TPBi/LiF/Al	This work	5.5 min	-
	MAPbBr3 NPs	ITO/PEDOT:PSS/perovskite/TPBi/TPBi:Cs ₂ CO ₃ /Al	2016	0.5 min	1
	MAPbBr ₃	ITO/PEDOT:PSS/MHP/TPBI/LiF/Al	2017	1.6 min	2
Organic-	MAPbBr ₃ /BABr		2017	1.5	2
inorganic	quasi-core/shell NCs	110/PVK/perovskite/1PBi/LiF/Ai	2017	1.5 min	3
hybrid	MADED: NG-	ITO/PEDOT:PSS/perovskite/B3PYMPM:TPBi/	2017	(4
PeLEDs	MAP6Br ₃ NCS	B3PYMPM:Cs2CO3/Al	2017	6 min	4
	FA _{0.8} Cs _{0.2} PbBr ₃ NPs	ITO/PEDOT:PSS/TFB/MHP/TPBI/LiF/Al	2017	1.6 min	5
	FAPbBr ₃ NCs	ITO/PEDOT:PSS/TFB/FAPbBr ₃ /TPBi/LiF/Al	2018	0.5 min	6
	MAPbBr3 QDs	ITO/PEDOT:PSS/PVK/perovskite/TPBi/LiF/Al	2019	7 min	7
	CsPbBr ₃ NPs	ITO/NiO/MHP/ZnO/Al	2017	1.75 h	8
All-inorganic	CsPbBr ₃ :PEO	ITO/PEDOT:PSS/MHP/TPBI/LiF/Al	2017	80 h	9
PeLEDs	CsPbBr ₃ QDs	ITO/PEDOT:PSS/Poly-TPD/MHP/TPBi/LiF/Al	2018	3 h	10
	CsPbBr ₃	ITO/PEDOT:PSS/MHP/TPBi/LiF/Al	2019	250 h	11

References

- J. Xing, F. Yan, Y. Zhao, S. Chen, H. Yu, Q. Zhang, R. Zeng, H. V. Demir, X. Sun, A. Huan and Q. Xiong, *ACS Nano*, 2016, **10**, 6623-6630.
- 2. J. W. Lee, Y. J. Choi, J. M. Yang, S. Ham, S. K. Jeon, J. Y. Lee, Y. H. Song, E. K. Ji, D. H. Yoon, S.

Seo, H. Shin, G. S. Han, H. S. Jung, D. Kim and N. G. Park, ACS Nano, 2017, 11, 3311-3319.

- Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Scholes and B. P. Rand, *Nat. Photonics*, 2017, 11, 108-115.
- F. Yan, J. Xing, G. Xing, L. Quan, S. T. Tan, J. Zhao, R. Su, L. Zhang, S. Chen, Y. Zhao, A. Huan, E. H. Sargent, Q. Xiong and H. V. Demir, *Nano lett.*, 2018, 18, 3157-3164.
- X. Zhang, H. Liu, W. Wang, J. Zhang, B. Xu, K. L. Karen, Y. Zheng, S. Liu, S. Chen, K. Wang and X.
 W. Sun, *Adv. Mater.*, 2017, 29. 1606405.
- D. Han, M. Imran, M. Zhang, S. Chang, X. Wu, X. Zhang, J. Tang, M. Wang, S. Ali, X. Li, G. Yu, J. Han, L. Wang, B. Zou and H. Zhong, *ACS Nano*, 2018, **12**, 8808-8816.
- Y. Yao, H. Yu, Y. Wu, Y. Lu, Z. Liu, X. Xu, B. Ma, Q. Zhang, S. Chen and W. Huang, ACS Omega, 2019, 4, 9150-9159.
- Q. Shan, J. Li, J. Song, Y. Zou, L. Xu, J. Xue, Y. Dong, C. Huo, J. Chen, B. Han, H. Zeng, J. Mater. Chem. C 2017, 5, 4565.
- C. Wu, Y. Zou, T. Wu, M. Ban, V. Pecunia, Y. Han, Q. Liu, T. Song, S. Duhm and B. Sun, *Adv. Funct. Mater.*, 2017, 27, 1700338.
- T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa and J. Kido, *Nat. Photonics*, 2018, **12**, 681-687.
- H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang, Y. Shang, Z. Ning, W. Zhang, W. Zheng, Y. Yan, S. V. Kershaw, L. Zhang, A. L. Rogach and X. Yang, *Nat. Commun.*, 2019, **10**, 665.