Supplementary Materials:

Giant energy storage efficiency and high recoverable energy storage density achieved in K_{0.5}Na_{0.5}NbO₃-Bi(Zn_{0.5}Zr_{0.5})O₃ ceramics

Miao Zhang,^a Haibo Yang,^{a, *} Da Li,^a Liang Ma,^b Ying Lin^{a, *}

^a Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China

^b Xianyang Non-metallic Mineral R & D Institute Co.,Ltd., Xianyang 712021, China

* Corresponding Authors

(Haibo Yang*) Email: yanghaibo@sust.edu.cn

(Ying Lin*) Email: linying_333@163.com

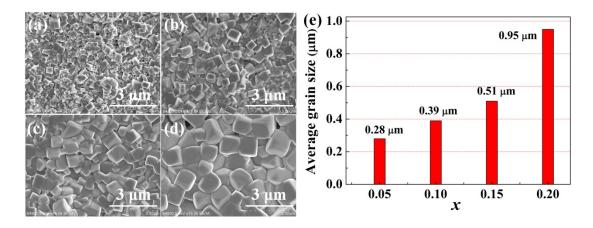


Fig. S1 SEM of (1-x)KNN-xBZZ ceramics (a) x=0.05; (b) x=0.10; (c) x=0.15; (c)

x=0.20. (e) average gain sizes of (1-x)KNN-xBZZ ceramics.

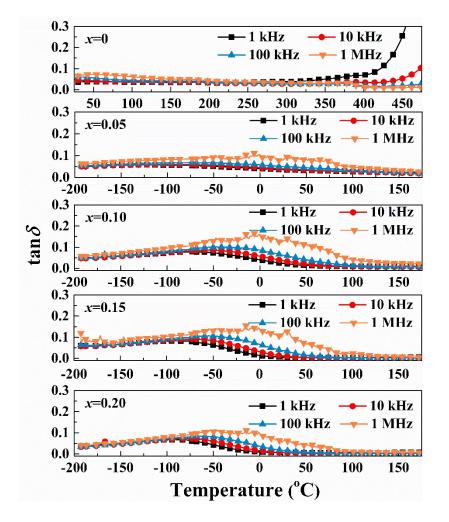


Fig. S2 Temperature dependence of dielectric loss $(\tan \delta)$ of (1-x)KNN-xBZZ ceramics.

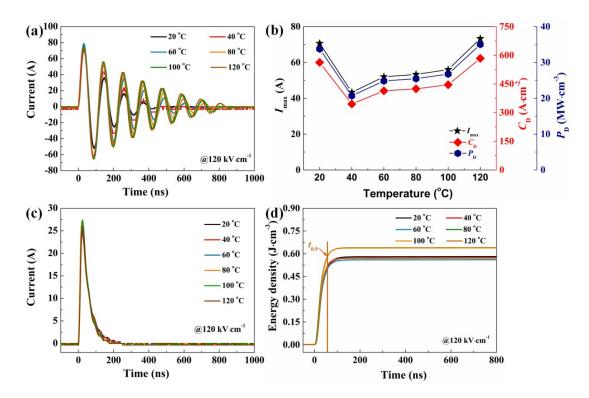


Fig. S3 (a) Underdamped discharge waveforms of the 0.85KNN-0.15BZZ ceramic measured over a temperature range from 20 to 120 °C. (b) Variations in the I_{max} , C_{D} and P_{D} values as functions of temperature. (c) Overdamped discharge current curves of the 0.85KNN-0.15BZZ ceramic at different temperatures at 120 kV·cm⁻¹. (d) Relationship between energy density (W_{d}) and time (t).