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1 Experimental Procedures

1.1 General information

All reactants and solvents used for the synthesis were commercially available and used
without further purification unless otherwise specified. Elemental analyses were performed on
a EuroVector EA3000 Organic Element Analyzer. Mass spectra were recorded by a 4800 Plus
MALDI TOF/TOF Analyzer. '"H and 3C Nuclear Magnetic Resonance (NMR) spectra were
recorded on a Bruker AVANCE III HD 400 MHz spectrometer. Thermogravimetric analysis
(TGA) and differential scanning calorimetry (DSC) measurements were conducted under
nitrogen atmosphere at a heating of rate 10 °C/min performed using a NETZSCH STA449F5
Jupiter Synchronous thermal analyzer. Cyclic voltammetry (CV) was measured on a CHI-
660D electro-chemical workstation with three-electrode system, in which glassy carbon
electrode, Pt wire electrode and Ag/AgCl electrode as working electrode, counter electrode
and reference electrode, respectively. A  solution of tetra-n-butylammonium
hexafluorophosphate (BuyNPFg) (0.1 M) in dichloromethane (DCM) was used as electrolyte.
Highest occupied molecular orbital (HOMO) energy level was determined from the onset
potential of oxidation by cyclic voltammetry, Eyomo=-(Eonsett4-.4); while lowest unoccupied
molecular orbital (LUMO) energy level can be calculated using Eyomo and optical band gap
(Eo), Erumo=EmomotEg! Ultraviolet-visible (UV-Vis) spectra were obtained using a
Shimadzu, UV-2700 UV-Vis spectrophotometer. Both steady-state, time-resolved
photoluminescence (PL) spectra and transient decay spectra at 77 K and 300 K were collected
from an Edinburgh FLS 980 spectrophotometer, which equipped with Oxford Instruments
nitrogen cryostat (Optistat DN) for temperature control. Raman spectra were recorded by a
Renishaw inVia Raman Microscope with 785 nm excitation. Powder X-Ray Diffraction
(PXRD) experiments were performed on a BRUKER D8 ADVANCE X-ray diffractometer at
a scan rate of 10° (2 Theta) per min.
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Scheme S1 Synthesis route of CTM and tCTM.



Dibenzo[b,d] thiophen-2-yl (4-fluorophenyl) methanone (DBT-BZ-F) was synthesized
according to the previous work.>? The synthesis route of presented molecular are shown in
Scheme S1.

Procedure for the synthesis of (4-(9H-carbazol-9-yl) phenyl) (dibenzo [b,d] thiophen-2-yl)
methanone (CTM)

To a mixture of DBT-BZ-F (612.1 mg, 2 mmol) and 9H-carbazole (417.7 mg, 2.5 mmol) in
dry N, N-Dimethylformamide (DMF, 20mL), +-BuOK powder (448.8 mg, 4 mmol) was added
after the reaction system was evacuated under vacuum and purged with dry nitrogen for three
times. The mixture was under stirring and heated under reflux overnight. After the mixture
was cooled, it was subsequently poured into deionized water (400 mL) and stirred for 5
minutes. Organic layer was extracted with dichloromethane for three times, gathered and
washed with brine twice, then dried over anhydrous MgSQO,. Residue was obtained after
solvent evaporation under reduced pressure, and to give CTM as white powder after purifying
by silica-gel column chromatography using dichloromethane/petroleum as eluent. Yield:
82%; '"H NMR (400 MHz, CDCl;) J ppm: 8.71 (s, 1H), 8.28-8.24 (m, 1H), 8.14 (dd, J = 14.8,
8.1 Hz, 4H), 8.00 (s, 2H), 7.94-7.88 (m, 1H), 7.80-7.75 (m, 2H), 7.59-7.50 (m, 4H), 7.46 (t, J
=7.7 Hz, 2H), 7.33 (td, J= 7.5, 7.1, 1.0 Hz, 2H); 13C NMR (101 MHz, CDCls) ¢ ppm: 195.37,
144.33, 141.68, 140.29, 139.78, 136.38, 135.64, 135.15, 133.81, 131.90, 128.12, 127.55,
126.38, 126.24, 124.98, 123.87, 123.56, 123.01, 122.72, 122.07, 120.63, 120.50, 109.83;
MALDI-TOF-MS m/z: 453.1554. Elemental analyses (%) calcd for C5;H;9NOS: C 82.09, H
4.22,N 3.09,03.53, S 7.07; found:C 82.16, H 4.18, N 3.15, O 3.56, S 6.96.

Procedure for the synthesis of (4-(3, 6-di-tert-butyl-9H-carbazol-9-yl) phenyl) (dibenzo
[b,d] thiophen-2-yl) methanone (tCTM)

The synthesis of tCTM is similar to that of CTM, except for the aromatic amine 3, 6-di-fert-
butyl-9H-carbazole. The residue was purified by silica-gel column chromatography using
dichloromethane/petroleum as eluent, and to give tCTM as yellowish-white powder. Yield:
85%; '"H NMR (400 MHz, CDCl;) ¢ ppm: 8.71 (d, J= 1.1 Hz, 1H), 8.28-8.23 (m, 1H), 8.16 (d,
J=1.4 Hz, 2H), 8.13-8.08 (m, 2H), 8.00 (d, J = 1.1 Hz, 2H), 7.90 (dt, J = 5.3, 3.1 Hz, 1H),
7.79-7.73 (m, 2H), 7.55-7.48 (m, 6H), 1.48 (s, 18H); 13C NMR (101 MHz, CDCl;) 6 ppm:
195.44, 144.22, 143.68, 142.25, 139.78, 138.60, 135.78, 135.61, 135.17, 133.94, 131.88,
128.12, 127.52, 125.80, 124.97, 123.93, 123.90, 123.56, 123.00, 122.70, 122.08, 116.44,
109.34, 34.81, 32.00; MALDI-TOF-MS m/z: 565.3025. Elemental analyses (%) calcd for
C3oH3sNOS: C 82.79, H 6.24, N 2.48, O 2.83, S 5.67; found: C 82.86, H 6.21, N 2.52, O 2.78,
S 5.66.

1.2 Single crystal X-ray crystallography

Single crystal of CTM-B and tCTM-B were obtained by slow diffusion of poor solvent -

hexane to tetrahydrofuran in a sealed test tube, while CTM-W and tCTM-W yielded from
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slow evaporation of dichloromethane and methanol solution at room temperature. Single
crystal diffraction data was collected from the instrument SuperNova, Dual, Cu at zero,
AtlasS2 diffractometer with Cu-Ka radiation (A=1.54184 A) or Mo-Ka radiation (A=0.71073
A) at the temperature of 100.00 (10) K. The corresponding CCDC reference number (CCDC:
1975024-1975027) and the data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Their crystal data are

listed on Table S3.

1.3 Theoretical calculations

The ground state (Sy) geometries include of isolated molecules (monomers) and adjacent
molecules (dimers) were extracted from single crystal structures. Based on S, geometries,
vertical transition energy were calculated in B3LYP/6-31 G* level 3 via time-dependent
density functional theory (TD-DFT), using Gaussian 09 program package.* Spin-orbital
couplings (SOC) matrix elements were calculated in the same level as mentioned, via Orca
package.’

1.4 Device fabrication and measurement

Synthetic materials were used in devices fabrication after sublimation, while other materials
used as auxiliary layers were commercially available and used without further purification.
ITO-coated glass substrates with a sheet resistance of 15 Q sqrt™! were used as a transparent
anode, which were washed using detergent and underwent ultrasound bath of deionized water,
acetone and isopropanol, successively for 15 minutes. And used after thoroughly dried and
treated with O, plasma for half of an hour. Under high vacuum better than 107¢ Torr,
materials were heated to sublimate and deposited onto ITO substrates. The rates of deposition
were detected and controlled via quartz crystal oscillators, maintaining 1~2 A/s for organic
materials, 0.1 A/s for ~LiF and ~5 A/s for aluminum cathode, respectively.
Electroluminescence (EL) spectra and luminance were collected by a Spectroradiometer
(Photo Research PR 650) and PMA-12 photonic multichannel analyzer (Hamamatsu),
respectively. Current density and voltage were recorded on a Keithley 237 power source
(Tektronix). External quantum efficiencies of devices were calculated using EL spectra and
current, assuming the devices were Lambertian light sources.



2. Results and Discussion

Molecular structures %

CTM

<
Optimized structures /"‘(r ) 3
i
LUMO -1.89eV 7
A

3.163 eV
Esv—= —

——————

7Yy
1 I
] 1

E,=3.47eV
E,=3.62eV AEg =0.411eV AEgy = 0.357 eV

E,, 3.037 ev‘gﬁr

PP —
n

\d
2.752 eV T

HOMO -5.51 eV *.(L( K(‘E \
Oy

Fig. S1 Molecular structures, optimized ground-state (S,) structures, HOMO and LUMO distributions, and
energy levels of HOMOs/LUMOs, energy gap (£,) of CTM and tCTM based on DFT at the B3LYP/6-31G*
level. Calculated energy levels of first singlet (S,) state (Es;) and first triplet (T,) state (Et;), splitting energies of
S; and T, (AEst), and oscillator strength (f) of CTM and tCTM based on TD-DFT at the same level are listed.
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Fig. S2. (a) Cyclic voltammetry (CV) and (b) TGA (inset: DSC) curves of CTM and tCTM.



2.1 Photoluminescent properties
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Fig. S3. PL spectra of (a) CTM and (b) tCTM in different solvents (10pM) with increased polarity.

Table S1 Summary photophysical data of CTM and tCTM.
Aabs® A T4lt! @p ] Eg/Eqld] AEgrll HOMO/LUMOM Tl T,
Compound . .
[om]  [nm]  [us] [70] [eV] [eV] [eV] [°C] [°C]
292/ 404/ 0.6/ 23.6/ 3.069/
CT™M 0.262 -5.75/-2.73 332 N.D.MM
340 430 24 30.4 2.838
296/ 0.1/ 38.7/ 3.013/2.7
tCTM 476 0.264 -5.60/-2.69 392 116
349 4.0 45.2 49

[alMeasured in Tetrahydrofuran (THF) solution (10 uM) at 300 K. PILifetimes of delay fluorescence measured in
DCM solution (10 uM) before/after N, bubbling for 30 min at 300 K. [lAbsolute  photoluminescence quantum
yield measured in DCM solution (10 uM) before/after N, bubbling for 30 min with an integrating sphere at 300

K. IEg and Et were obtained from the onsets of fluorescence spectra and the shortest-wavelength local excited

(LE) peak in phosphorescence spectra respectively for two emitters in 2-Methyl-THF solution (10 uM) at 77 K.

[IAEg1=Es-Et. WEpoMmo Was determined from the half-wave potentials of the oxidation reduction curves. Eyymo
=FEnomotE,; E, was obtained from the onsets of UV/Vis absorption spectra. (¢l corresponding to 5% weight loss.

(1 Not detected within the measured temperature range.
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Fig. S7 Normalized PL spectra of (a) CTM and (b) tCTM at different aggregated states under ambient

conditions; A,=350 nm.
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Fig. S8 Normalized PL spectra of (a) CTM and (b) tCTM doped films (20 wt% doped into DPEPO) and single
crystals, =350 nm.
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Fig. S9 Transient PL decay curves of single crystals (a) CTM-B, (b) CTM-W, (c) tCTM-B and (d) tCTM-W,

respectively at 300 K under vacuum condition; A=350 nm.
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Fig. S10 Transient PL decay curves of single crystals (a) CTM-B, (b) CTM-W, (c) tCTM-B and (d) tCTM-W,

respectively at 300 K under vacuum condition; A=350 nm.
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Table S2 Summary photophysical data of crystal CTM-B, CTM-W, tCTM-B and tCTM-W.

@ 300 K (Vacuum) | @77 K (N,)
Crystal Aem-blue Aem-orange Torange Aem-blue Aemorange  AEgr!®!
[nm] [nm] [ms] (%) [nm] [nm] [eV]
CTM-B 456 56002 23.9 444 48419535 023
CTM-W 430 551 59.0 430 482/544 030
tCTM-B 440 550 0.054 (65.6)<1/0.54 (34.34)4] 440 462/542 0.4
{CTM-W 434 553 0.088 (91.57)<1/0.2 (8.43)! 437 454/530 0.1

[a1Delayed 0.1 ms. Lifetimes and the corresponding contributions of [ t; and [°] 1, of biexponential decays at
orange component. [4 Delayed 5 ms. [} AEgr of monomer, determined from monomeric fluorescence and

phosphorescent at 77 K.
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Fig. S11 Normalized TRPL spectra of (a) CTM-B, CTM-W; and (b) tCTM-B, tCTM-W, respectively at 77 K
under nitrogen atmosphere; A.,=350 nm. S;(M), T,(M) represent the first singlet excited states and triplet excited
states of monomers in crystals. While T* represents the triplet excited state of intermolecular electronic coupling

dimer in crystals.
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2.2 Single crystal analysis

Table S3 Summary of the crystal data for CTM-B, CTM-W, tCTM-B and tCTM-W.

Identification code CTM-B CTM-W tCTM-B tCTM-W
Empirical formula C31H19NOS C31H19NOS C39H35NOS C39H35NOS
CCDC number 1975024 1975025 1975026 1975027
Formula weight 453.53 453.53 565.74 565.74

Temperature / K 100.00 (10) 100.00 (10) 100.00 (10) 100.00 (10)
Crystal system monoclinic monoclinic monoclinic monoclinic
Space group P2i/n P2/c P2,/c P2i/n
a/A 9.6739 (2) 16.7886 (5) 16.7257 (10) 21.700 (2)
b/A 8.3766 (2) 32.6553 (9) 12.0845 (5) 6.7601 (5)
c/A 27.1700 (6) 8.0391 (2) 15.9769 (9) 22.202 (2)
a/° 90 90 90 90
B/° 92.264 (2) 97.373 (3) 114.206 (7) 109.472 (12)
v/° 90 90 90 90
Volume/A3 2199.97 (9) 4370.9 (2) 2945.3 (3) 3070.7 (6)
V4 4 8 4 4
Pealcg/cm? 1.369 1.378 1.276 1.224
wmm-! 1.499 1.509 0.143 1.169
F (000) 944.0 1888.0 1200.0 1200.0
. 0.14 x0.12 x 0.13x0.12 x
Crystal size/mm? 0.12x0.11x0.1 0.13 x0.12 x 0.1
0.11 0.11
o CuKa (A= MoKa (A = CuKa (A=
Radiation CuKa (L =1.54184)
1.54184) 0.71073) 1.54184)
20 range for data
. 6.512t0 146.914 5.308 to 147.192 4.3 t0 49.994 4.932 to 149.304
collection/®
-20<h<18,-38 -19<h<15,-14 -26<h<18§,-8<
-11<h<10,-6<k<
Index ranges <k<40,-6<1< <k<14,-15<I1< k<5,-27<1<
10,-33<1<32
9 18 27
Reflections collected 7850 18374 13420 11347
8592 [Rin = 5195 [Rin = 6048 [Riy =
. 4292 [Ry, = 0.0201,
Independent reflections R _ 0.0263] 0.0357, Ryigma = 0.0340, Ryigma = 0.0537, Ryigma =
em 0.0455] 0.0438] 0.0731]
Data/restraints/parameters 4292/0/307 8592/14/613 5195/14/385 6048/0/385
Goodness-of-fit on F? 1.070 1.056 1.042 1.033
Final R indexes [[>=2c R;=0.0481, wR, = R; =0.0828, R; =0.0526, R;=10.0905,
D] 0.1260 wR; =0.1856 wR,=0.1191 wR; =0.2287
. ) R;=0.0534, wR, = R;=0.1064, R; =0.0634, R;=0.1282,
Final R indexes [all data]
0.1302 wR;=10.2103 wR;=0.1261 wR; =0.2658
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View of packing from a axis View of packing from ¢ axis

Fig. S12 Views of molecular packing of single crystal CTM-B from (a) a axis, (b) b axis and (c) ¢ axis,

respectively; blue lines indicate the n—r interactions from the Cz groups on the neighboring molecules.

View of packing from b axis View of packing from c axis

Fig. S13 Views of molecular packing of tCTM-B from (a) b axis, (b) a axis and (c) ¢ axis, respectively; blue

lines represent the N---S intermolecular interactions.
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View of packing from b axis View of packing from ¢ axis

Fig. S14 Views of molecular packing of CTM-W from (a) a axis, (b) b axis and (c) ¢ axis; respectively, blue

lines represent the C=0---S intermolecular interactions.

View of packing from a axis

View of packing from b axis View of packing from ¢ axis

Fig. S15 Views of molecular packing of tCTM-W from (a) a axis, (b) b axis and (c) ¢ axis, respectively; blue

lines represent the C=0---S intermolecular interactions.
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2.3 Raman spectra analysis
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Fig. S16 Raman spectra of (a) BP, (b) DBT, (c) Cz, (d) tCz, (¢) CTM-B, (f) CTM-W), (g) CTM-W-G (ground
sample), (h) tCTM-B, (i) tCTM-W, and (j) tCTM-W-G (ground sample); v represents stretching; [ represents

in-plane bending; ® represents out-of-plane bending.
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Fig. S17 Normalized PL spectra of crystal and ground sample (a) CTM-W and CTM-W-G, (b) tCTM-W and
tCTM-W-G. Insets: corresponding PXRD patterns of crystals and ground samples. Completely grinding for 10

min. A,=350 nm.

2.4 Theoretical calculations

Table S4 Theoretical-calculation results of CTM-B, CTM-W, tCTM-B, and tCTM-W.

Parameters CTM-B . CTM-W . tCTM-B . tCTM-W.
Monomer | Dimer | Monomer | Dimer | Monomer | Dimer | Monomer | Dimer

Egi [eV] 3.19 3.20 3.19 3.16 3.05 2.98 3.07 3.07
Et [eV] 2.90 2.82 2.79 2.80 2.72 2.70 2.73 2.74
AEgt [eV] 0.29 0.38 0.40 0.36 0.33 0.28 0.34 0.33
CSiT B [em] 0.75 0.01 0.75 0.70 0.65 0.59 0.63 0.64
CS Ty [em™] 1.17 0.79 1.08 0.25 1.47 0.13 1.48 0.19
CSiTs [em ] 291 0.00 2.90 0.96 0.36 0.09 0.43 1.46

[al SOC matrix elements between S; state and T, state. ! SOC matrix elements between S; state and T, state. [

SOC matrix elements between S, state and T; state.
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Table S5 The electrical density contour of HOMO-1, HOMO, LUMO and LUMO+1, of dimers of CTM-W and
tCTM-W based on TD-DFT results.

tCTM-W

LUMO+1

LUMO

HOMO

HOMO-1
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Fig. S19 'H NMR spectrum of compound CTM measured in CDCl;.
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Fig. S20 '*C NMR spectrum of compound CTM measured in CDCl;.
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Fig. S23 MALDI-TOF-MS of compound CTM.
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Fig. S24 MALDI-TOF-MS of compound tCTM.
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