Supporting Information for

Layer-structured BaTiO₃/P(VDF-HFP) composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications

Liang Sun^a, Zhicheng Shi^{a,*}, Liang Liang^a, Shuang Wei^a, Huanlei Wang^a, Davoud Dastan^{c,*}, Kai Sun^b, Runhua Fan^b.

^aSchool of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China

^bInstitute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, P. R. China

^cSchool of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia-30332, USA

*Corresponding author: Zhicheng Shi; Davoud Dastan

*E-mail: zcshi@ouc.edu.cn; davoud.dastan@mse.gatech.edu

Fig. S1 Cross-sectional SEM morphologies of (a) pure P(VDF-HFP) and (b) singlelayer BT/P(VDF-HFP) composite with 15 vol% BT; (c) XRD of pure P(VDF-HFP), single-layer BT/P(VDF-HFP) composite with 15 vol% BT and BaTiO₃ nanoparticals;(d) FT-IR of pure P(VDF-HFP) and single-layer BT/P(VDF-HFP) composite with 15 vol% BT.

Fig. S2 (a.b) SEM and (c) size distribution of BaTiO₃ nanoparticles; (d)¹H spectrum,
(e)¹³C spectrum and (f)¹⁹F spectrum of pure P(VDF-HFP).

Fig. S3 Cross-sectional SEM morphologies of (a-c) 2-layer and (d-f) 4-layer BT/P(VDF-HFP) composites with 15 vol% BaTiO₃.

Fig. S4 (a-c) EDX mapping of 2-layer and (d-f) 4-layer composites with 15 vol% BT.

Fig. S5 Optical photograph of P(VDF-HFP) and 4-layer BT/P(VDF-HFP) with 5 vol%, 10 vol% and 15 vol% BT.

Fig. S6 The dielectric permittivity standard deviations of (a) 5 vol% BT/P(VDF-HFP), (b) 10 vol% BT/P(VDF-HFP) and (c) 15 vol% BT/P(VDF-HFP) composites with different number of layers.

Fig. S7 (a-c) Frequency dependences of the electrical conductivity for for 5 vol% BT/P(VDF-HFP), 10 vol% BT/P(VDF-HFP) and 15 vol% BT/P(VDF-HFP) composites with different number of layers. (d) Electrical conductivity of the 1-layer, 2-layer and 4-layer composites with different BT loadings at 10 kHz.

Fig. S8 The distribution of electric potential in 1-layer, 2-layer and 4-layer composites by finite element simulation.

Fig. S9 *P-E* loops of pure P(VDF-HFP) and 1-layer composites with different loading fractions of BT under varied electric fields.

Fig. S10 (a-c) *P-E* loops of 2-layer and (d-f) 4-layer composites with different loading fractions of BT under varied electric fields.

Fig. S11 Frequency dependences of (a) dielectric permittivity and (b) loss tangent for 4-layer composites with different stacking order; (c) Weibull distribution plots of 4-layer composites;(d) *P-E* loops of 4-layer composites under varied electric fields; (e)The discharged energy densities and (f) discharged efficiencies of 4-layer composites under varied external electric fields.

As shown in Figure S11, the 0-20-0-20 composite exhibits better comprehensive dielectric energy storage performances than the 0-20-20-0 composite.