Supplementary information

1) Chemical analysis of AI-DEM-NO₂ (see¹) and Y-DEM-NO₂ (see²)

- Single crystal structure: (Fig. S1b)¹
- MS (Fig. S2+3)¹
- ²⁷Al-NMR (Fig. S4)¹
- ¹³C-NMR (Fig. S6)¹ + (Fig. S4)²
- Dept-NMR (Fig. S7)¹ + (Fig. S5)²
- ¹H-NMR (Fig. S8)¹ + (Fig. S3)²
- IR (Fig. S9)¹ + (Fig. S2a)²
- EA (exp. sec.)¹ + (exp. sec.)²
- TG (Fig. 1a)¹ + (Fig. 3a)²
- TG-DSC (Fig. 1b)¹ + (Fig. 3b)²
- TG-MS (Fig. 1c)¹ + (Fig. 4a)²
- TG-IR (Fig. 1d) + (Fig. 5a)²

2) Material analysis of AI_xO_y (see¹) and Y_xO_y (see²)

- XRD: (Fig.2a)¹ + (Fig.6a)²
- TEM: (Fig.2b)¹ + (Fig.6d)²
- IR: (Fig.3)¹ + (Fig.7a)²
- AFM: (Fig.4)¹ + (Fig.S17a)²
- XPS: (Fig.5)¹ + (Fig.8)²
- XRR: (Fig.S13)¹

3) Electrical characterization of AI_xO_y (see¹) and Y_xO_y (see²) thin-films

•	Capacitance vs. frequency:	(Fig.7a) ¹ + (Fig.12a) ²
•	Current leakage density vs. electric field:	(Fig.7b) ¹ + (Fig.12b) ²
•	TFT transfer characteristics:	(Fig.8a)1 + (Fig.13a)2
•	TFT output characteristics:	(Fig.8b) ¹ + (Fig.13b) ²

- 1. N. Koslowski, S. Sanctis, R. C. Hoffmann, M. Bruns and J. J. Schneider, *Journal of Materials Chemistry C*, 2019, 7, 1048-1056.
- 2. N. Koslowski, R. C. Hoffmann, V. Trouillet, M. Bruns, S. Foro and J. J. Schneider, *RSC Advances*, 2019, 9, 31386-31397.