Electronic Supplementary Information

From Ag₂S to luminescent Ag-In-S nanocrystals *via* ultrasonic method – in situ synthesis study in an NMR tube

Patrycja Kowalik,^{a,b} Mateusz Penkala,*^c Piotr Bujak,*^a Angelika Kmita,^d Marta Gajewska,^d Andrzej Ostrowski,^a Aneta Slodek^c and Adam Pron^a

^aWarsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland. *E-mail: piotrbujakchem@poczta.onet.pl
^bFaculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
^cInstitute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland. *E-mail: mateusz.penkala@us.edu.pl
^dAGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. Mickiewicza 30, 30-059 Kraków, Poland

Fig. S1 Energy-dispersive spectra of nanocrystals obtained from reaction mixtures with $AgNO_3$ ($Ag_{1.0}In_{3.1}Zn_{1.0}S_{4.0}(S_{6.1})$) and without $AgNO_3$ ($In_{3.4}Zn_{1.0}S_{4.9}(S_{6.1})$).

Fig. S2 X-ray powder diffractograms of nanocrystals obtained from reaction mixtures with AgNO₃ (Ag_{1.0}In_{3.1}Zn_{1.0}S_{4.0}(S_{6.1})) and without AgNO₃ (In_{3.4}Zn_{1.0}S_{4.9}(S_{6.1})), for comparison purposes XRD patterns of the orthorhombic AgInS₂ (JCPDS 00-025-1328), hexagonal ZnS (JCPDS 00-036-1450), tetragonal β -In₂S₃ (JCPDS 00-025-390) and cubic ZnS (JCPDS 00-005-0566).

Fig. S3 Energy-dispersive spectra of $Ag_{2.00}S_{1.00}(S_{1.00})$ (sample A), $Ag_{1.00}In_{0.80}S_{1.60}(S_{1.70})$ (sample B) and $Ag_{1.00}In_{0.87}S_{1.94}(S_{1.80})$ (sample C) nanocrystals.

Fig. S4 X-ray powder diffractogram and TEM image of Ag_{1.0}In_{0.8}S_{1.6}(S_{1.7}) (sample B) nanocrystals.

Fig. S5 Energy-dispersive spectra and TEM image of $Ag_{1.00}In_{0.87}S_{1.84}(S_{1.80})$ nanocrystals (d = 3.3 ±0.9 nm) obtained using hexane as solvent.

Fig. S6 Room temperature UV-vis-NIR spectra of toluene dispersion of Ag_2S (sample A) and $Ag_{1.00}In_{0.87}S_{1.94}(S_{1.80})$ (sample C) nanocrystals and the corresponding $(Ahv)^2 vs hv$ curves (where A = absorbance, h = Planck's constant and v = frequency).

Fig. S7 ¹H and ¹H-¹H COSY NMR spectra of S/OLA ($C_{18}H_{35}NH_3^+C_{18}H_{35}NH-S_8^-$) in benzened₆ at 298 K.

Fig. S8 ¹H NMR spectrum of S/OLA (a) and time evolution of the ¹H NMR spectrum of the reaction between S/OLA and AgNO₃ in benzene-d₆ at 298 K.

Fig. S9 ¹H and ¹H-¹H COSY NMR spectra of the reaction mixture (S/OLA + AgNO₃) after 20 hours in benzene- d_6 at 298 K.

Fig. S10 ¹H NMR spectrum of S/OLA (a) and time evolution of the ¹H NMR spectrum of the reaction between S/OLA and AgNO₃ and InCl₃ in benzene-d₆ at 298 K.

Fig. S11 ¹H and ¹H-¹H COSY NMR spectra of the reaction mixture (S/OLA + AgNO₃ + InCl₃) after 64 minutes in benzene- d_6 at 298 K.

Fig. S12 ¹H NMR spectrum of S/OLA (a) and time evolution of the ¹H NMR spectrum of the reaction between S/OLA and AgNO₃ and InCl₃ and DDT in benzene-d₆ at 298 K.

Fig. S13 ¹H and ¹H-¹H COSY NMR spectra of the reaction mixture (S/OLA + AgNO₃ + InCl₃ + DDT) after 20 hours in benzene-d₆ at 298 K.

Fig. S14 Evolution of UV-vis spectra of the Ag_2S nanocrystals obtained in an NMR tube. Inset: TEM images of nanocrystals Ag_2S isolated from reaction mixture after injection nucleation; after 15 min of the reaction and after separation of the final fraction (180 min of the reaction).

Fig. S15 ¹H NMR spectra of OLA and Ag⁺-OLA (5 mg of AgNO₃ + 60 μ L of OLA) and In³⁺-OLA (10 mg of InCl₃ + 60 μ L of OLA) in benzene-d₆ at 298 K.

Fig. S16 ¹H NMR spectra of DDT and Ag⁺-DDT (5 mg of AgNO₃ + 40 μ L of DDT) and In³⁺-DDT (10 mg of InCl₃ + 40 μ L of DDT) in benzene-d₆ at 298 K.