Supporting Information

Advances in modification of contradictory relationship: Simultaneously realizing large piezoelectricity and high Curie temperature in potassium sodium niobate based ferroelectrics

Jian Ma¹, Juan Wu¹, Bo Wu^{1, 2*} and Wenjuan Wu²

¹Sichuan province key laboratory of information materials, Southwest Minzu University, Chengdu 610041, P. R. China

²Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225, P. R. China

*Corresponding author. Email: wubo7788@126.com (B. Wu.)

Table S1: Crystal structure parameters of KNNS*x*-BNZ-BF ceramics: *x*=0 and 0.03.

Parameters	<i>x</i> =0		<i>x</i> =0.03	
Symmetry	R Phase	T Phase	R Phase	T Phase
proportion	68.53%	31.47%	28.26%	71.74%
Space group	R3m	P4mm	R3m	P4mm
a(Å)	3.9678	3.9439	3.9572	3.9613
b(Å)	3.9678	3.9439	3.9572	3.9613
c(Å)	3.9678	4.0027	3.9572	3.9987
Alpha(°)	89.9815	90	89.9533	90

Fig.S1: (a)-(b) dielectric (ε_r , tan δ), (c)-(d) ferroelectric (P_r , E_c), (e)-(g) strain (S_{pos} , S_{neg} , S_{uni}), and (h) d_{33} * properties of KNNS_x-BNZ-BF ceramics.

Fig.S1(a)-(b) shows dielectric (ε_r , tan δ) properties of KNNS_x-BNZ-BF ceramics. The ε_r almost linearly increases from 1249 to 2770 with increasing Sb⁵⁺, which benefits from the $T_{\text{R-T}}$ closing to the room temperature by adding Sb⁵⁺. The tan δ of all ceramics is around 3%~3.2%, and a lower tan δ (~3%) is obtained in the ceramics with *x*=0.03. The ferroelectric (P_r , E_c) properties of KNNS_x-BNZ-BF ceramics is shown in Fig.S1(c)-(d), and the corresponding parameters are extracted from the *P-E* loops [See Fig. S2]. Recent publications reported that KNN-based ceramics with doping Sb⁵⁺ will degrade the ferroelectric properties, which lead to a slow degradation of P_r as a function of

Sb⁵⁺.¹⁻³ The E_c presents a slight softening change with increasing Sb⁵⁺, and a lower E_c is obtained in the ceramics with *x*=0.03. As we know, a low

Fig.S2: (a) Ferroelectric loops, (b)Bipolar strain loops, and (c) Unipolar strain curves of KNNS_x-BNZ-BF ceramics.

energy barrier usually exists in the ceramics with multiphase coexistence, benefiting to making domain switching and polarization rotation easier.^{4, 5} The decreasing E_c can be ascribed to the multiphase structure closing to the room temperature. The strain (S_{pos} , S_{neg} , S_{uni}) properties as a function of Sb⁵⁺ are plotted in Fig.S1(e)-(g), measured at 1Hz and 40 kV/cm, the S_{pos} and S_{neg} are extracted from *S-E* loops and S_{uni} is derived from unipolar strain curves[See Fig. S2]. S_{pos} monotonely increases (S_{pos} : 0.131% \rightarrow 0.177%) with adding Sb⁵⁺, gaining a higher strain ($S_{pos}\sim$ 0.177%) value at R-T phase zone near the room temperature [See Fig. S1(e)]. S_{neg} (S_{neg} : 0.111% \rightarrow 0.133%) have the similar variation with increasing Sb⁵⁺ [See Fig. S1(f)], indicating that non-180° domains (*eg.*,71°, 109° and 90°) increase in the R-T phase boundary.⁶ As for unipolar strain (S_{uni} :0.142%-0.178%), has a similar trend to S_{pos} as the increase of Sb⁵⁺[See Fig. S1(g)], which can be explained by same contributions (eg., intrinsic piezoelectric response strain, extrinsic domain switching strain) of the S_{pos} and S_{uni} . d_{33}^* (S_{uni}/E_{max}) is plotted in Fig.S1(g), the change trend highly matched the S_{uni} , that is, the d_{33}^* increases from 355 pm/V to 445pm/V as a function of Sb⁵⁺. Considering the relatively high S_{neg} , S_{uni} and S_{pos} in the R-T phase boundary, the strain properties mainly originate from intrinsic and extrinsic contribution, such as the piezoelectric response strain, domain switching strain.

References

1. J. G. Wu, D. Q. Xiao, J. G. Zhu. Chem. Rev. 2015, 115, 2559.

2. J. Wu, H. Tao, Y. Yuan, X. Lv, X.Wang, X. Lou, RSC Adv., 2015, 5, 14575.

3. Y. Yuan, J. Wu, T. Hong, X. Lv, 1 X. Wang, and X. Lou, J. Appl. Phys., 2015, 117, 084103.

4. B. Wu, H. Wu, J. Wu, D. Xiao, J. Zhu, S. Pennycook, J. Am. Chem. Soc. 2016, 138, 15459.

H. Tao, H. Wu, Y. Liu, Y. Zhang, J. Wu, F. Li, X. Lyu, C. Zhao, D. Xiao, J. Zhu, S. Pennycook, J. Am. Chem. Soc., 2019, 141, 13987.

6. P. Marton, I. Rychetsky, J. Hlinka, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 81, 144125