Supporting Information

Dopant-free Polymeric Hole Transport Materials for Efficient CsPbI₂Br Perovskite Cells with a Fill Factor Exceeding 84%

Pang Wang⁠,⁠, Hui Wang⁠,⁠, Mingyu Jeong⁠, Sang Myeon Lee⁠, Baocai Du⁠,⁠, Yuchao Mao⁠,⁠, Fanghao Ye⁠,⁠, Huijun Zhang⁠,⁠, Donghui Li⁠,⁠, Dan Liu⁠,⁠, Changduk Yang⁠,⁠, and Tao Wang⁠,*⁠,

School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China *E-mail: twang@whut.edu.cn
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea E-mail: yang@unist.ac.kr
Figure S1. The dihedral angle from one repeating unit of polymeric HTMs: (a) PBDB-T, (b) PBDB-T-2Cl, (c) PBDB-T-2F and (d) PBDB-T-Si.
Figure S2. The best J-V curves of inorganic CsPbI\textsubscript{3}Br PSCs from forward and reverse scans using different HTMs: (a) PBDB-T, (b) PBDB-T-2Cl, (c) PBDB-T-2F, (d) PBDB-T-Si.
Figure S3. Steady state photoluminescence spectra of (a) ZnO/CsPbI₂Br, (b) ZnO/CsPbI₂Br/PBDB-T, (c) ZnO/CsPbI₂Br/PBDB-T-2Cl, (d) ZnO/CsPbI₂Br/PBDB-T-2F and (e) ZnO/CsPbI₂Br/PBDB-T-Si films upon continuous 1 sun illumination under 20-25% RH in ambient atmosphere. (f) Evolution of PL emission peak of various ZnO/CsPbI₂Br/HTM films.