## Supporting Information

## Optimization, selective and efficient production of CNTs/Co<sub>x</sub>Fe<sub>3-</sub>

## <sub>x</sub>O<sub>4</sub> core/shell nanocomposites as outstanding microwave absorbers

Mei Wu,<sup>a</sup> Abdou Karim Darboe,<sup>a</sup> Xiaosi Qi <sup>a,b,c,1\*</sup> Ren Xie,<sup>a</sup> Shuijie Qin,<sup>a</sup> Chaoyong

Deng,<sup>b</sup> Guanglei Wu,<sup>d</sup> Wei Zhong,<sup>c,\*</sup>

<sup>a</sup>College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China <sup>b</sup>Key Laboratory of Electronic Composites of Guizhou Province, Guizhou University, Guiyang City 550025, People's Republic of China <sup>c</sup>National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093, People's Republic of China <sup>d</sup>Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Ecotextiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China;

<sup>\*</sup>Corresponding author. Phone: +86-25-83621200. Fax: +86-25-83595535 E-mail: xsqi@gzu.edu.cn, wzhong@nju.edu.cn



Figure S1. Schematic scheme for the synthesis process of CNTs-based NCs-I.



Figure S2. XPS spectra of the obtained HC40-14 and HC60-12.



**Figure S3.** (a) Real part, and (b) imaginary part of complex permeability for the asprepared samples, respectively.



Figure S4. Comparison results between the experimental  $d_m$  values and theoretical curves for HC60-12 and HC100-12.



Figure S5. Impedance matching characteristics of (a) HC40-11, and (b) HC40-14.



**Figure S6.** Frequency-dependent attenuation constant curves for the as-prepared HC40-11, HC40-12 and HC40-14 samples.



Figure S7. Raman spectra of HCNTs and PCNTs, respectively.



Figure S8. TEM images of (a,b) PC40-12, and (c,d) PC40-13, respectively.

| Experiments | Names of Sample | Composition                                      | Effect on Microstructure                                                    |  |  |  |
|-------------|-----------------|--------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|
| i           | HC40-12         | $CoCO_3$ and $Co_xFe_{3-x}O_4$                   | Number of nanoparticles                                                     |  |  |  |
|             | HC60-12         | $\mathrm{Co}_{x}\mathrm{Fe}_{3-x}\mathrm{O}_{4}$ | enhancing the amount of                                                     |  |  |  |
|             | HC100-12        | $Co_xFe_{3-x}O_4$                                | HCNTs                                                                       |  |  |  |
| ii          | HC40-11         | CoCO <sub>3</sub> and                            |                                                                             |  |  |  |
|             | 110-10 11       | $Co_xFe_{3-x}O_4$                                | Much more $Co_rFe_{3-r}O_4$                                                 |  |  |  |
|             | HC40-12         | CoCO <sub>3</sub> and                            | nanoparticles assemble                                                      |  |  |  |
|             |                 | $\mathrm{Co}_{x}\mathrm{Fe}_{3-x}\mathrm{O}_{4}$ | together with decreasing the                                                |  |  |  |
|             | НС40-13         | $Co_xFe_{3-x}O_4$                                | molar ratio of Co:Fe                                                        |  |  |  |
|             | HC40-14         | $Co_xFe_{3-x}O_4$                                | 1                                                                           |  |  |  |
| iii         | HC40-14         | $Co_xFe_{3-x}O_4$                                | Number of nanoparticles<br>decreases with increasing the<br>amount of HCNTs |  |  |  |
|             | HC60-14         | $Co_xFe_{3-x}O_4$                                |                                                                             |  |  |  |
|             | HC80-14         | $Co_xFe_{3-x}O_4$                                |                                                                             |  |  |  |
| iv          | PC40-12         | CoCO <sub>3</sub> and                            | Number of nanoparticles                                                     |  |  |  |
|             |                 | $\mathrm{Co}_{x}\mathrm{Fe}_{3-x}\mathrm{O}_{4}$ | anchoring on the surface of                                                 |  |  |  |
|             | PC40-13         | $\mathrm{Co}_{x}\mathrm{Fe}_{3-x}\mathrm{O}_{4}$ | PCNTs decreases evidently compared to HCNTs                                 |  |  |  |

 Table S1. Summarized sheet for the effect of experimental parameters on the as 

 prepared core@shell structure CNTs-based NCs-I.



Figure S9. Impedance matching characteristics of (a) HC60-14, and (b) HC80-14.



**Figure S10.** Dielectric loss tangent values of (a) PC40-12 and PC40-13, and (b) PC40-12 and HC40-12, respectively.



Figure S11. Microwave absorption characteristic curves of PCNTs.

| Names of Sample | RL <sub>min</sub> (dB) | $d_m$ (mm) | AB <sub>max</sub> (GHz) | <i>d<sub>m</sub></i> (mm) |  |
|-----------------|------------------------|------------|-------------------------|---------------------------|--|
| НС40-12         | -58.82                 | 9.31       | 2.88                    | 3.05                      |  |
| HC60-12         | -61.4                  | 2.44       | 3.64                    | 2.76                      |  |
| HC100-12        | -61.86                 | 1.18       | 4.08                    | 1.35                      |  |
| HC40-11         | -49.96                 | 3.18       | 4.40                    | 1.64                      |  |
| HC40-12         | -58.82                 | 9.31       | 2.88                    | 3.05                      |  |
| HC40-14         | -47.28                 | 10         | 1.72                    | 9.01                      |  |
| HC60-14         | -56.2                  | 7.52       | 2.72                    | 6.89                      |  |
| HC80-14         | -62                    | 3.46       | 3.20                    | 2.75                      |  |
| PC40-12         | -63.32                 | 2.43       | 4.28                    | 1.58                      |  |
| PC40-13         | -67.18                 | 4.63       | 4.52                    | 1.76                      |  |
| PCNTs           | -7.32                  | 1.12       | -                       | -                         |  |

 Table S2. Summarized comprehensive EMWAPs of the as-prepared core@shell

 structure CNTs-based NCs-I.

**Table S3.** Comparison results of comprehensive EMWAPs for the as-prepared core@shell structure CNTs-based NCs-I with the recently reported representative magnetic particles modified CNTs.

| Names of Sample                                                                             | RL <sub>min</sub> (dB) | $d_m$ (mm) | AB <sub>max</sub> (GHz) | $d_m$ (mm) | References |
|---------------------------------------------------------------------------------------------|------------------------|------------|-------------------------|------------|------------|
| HC100-12                                                                                    | -61.86                 | 1.18       | 4.08                    | 1.35       | This work  |
| HC40-11                                                                                     | -49.96                 | 3.18       | 4.40                    | 1.64       | This work  |
| PC40-12                                                                                     | -63.32                 | 2.43       | 4.28                    | 1.58       | This work  |
| PC40-13                                                                                     | -67.18                 | 4.63       | 4.52                    | 1.76       | This work  |
| 3D Fe <sub>3</sub> O <sub>4</sub> /CNTs                                                     | -59.2                  | 1.68       | 3.1                     | 1.68       | S1         |
| ZnFe <sub>2</sub> O <sub>4</sub> @CNT                                                       | -54.5                  | 2.4        | 2.2                     | 2.5        | S2         |
| CNTs/Co <sub>0.5</sub> Zn <sub>0.5</sub> Fe <sub>2</sub> O <sub>4</sub>                     | -64.7                  | 3.1        | 4.3                     | 2.1        | S3         |
| CeO <sub>2</sub> -CNT                                                                       | -40.95                 | 3.5        | 1.8                     | 3.5        | S4         |
| CNTs/NiCo <sub>2</sub> O <sub>4</sub>                                                       | -45.1                  | 2.5        | 4.4                     | 1.5        | S5         |
| FeCo-C-CNTs                                                                                 | -79.2                  | 2          | 6.3                     | 2          | S6         |
| CNTs/ZnFe <sub>2</sub> O <sub>4</sub>                                                       | -55.5                  | 1.5        | 3.6                     | 1.5        | S7         |
| 3D Fe <sub>3</sub> O <sub>4</sub> -CNTs                                                     | -52.8                  | 6.8        | 2.2                     | 6          | S8         |
| Fe <sub>3</sub> O <sub>4</sub> -CNTs-HPCFs                                                  | -50.9                  | 2.5        | 5.8                     | 2.5        | S9         |
| Co-C/CNTs                                                                                   | -50                    | 2.4        | 4.3                     | 1.8        | S10        |
| Li <sub>0.3</sub> Zn <sub>0.3</sub> Co <sub>0.1</sub> Fe <sub>2.3</sub> O <sub>4</sub> @CNT | -21                    | 1          | 4.4                     | 2          | S11        |
| Fe <sub>3</sub> O <sub>4</sub> @CNTs                                                        | -39.27                 | 2          | 2.9                     | 2          | S12        |

## References

- S1. X.J. Zeng, L.Y. Zhu, B. Yang, R.H. Yu, Mater. Design, 2020,189, 108517.
- S2. F. Li, W.W. Zhan, Y.T. Su, S. H. Siyal, Gang. Bai, W. Xiao, A.S. Zhou, Gang Sui,
  X.P. Yang, *Compos. Part A*, 2020, 133, 105866.
- S3. R.W. Shu, Y. Wu, Z.Y. Li, J.B. Zhang, Z.L. Wan, Y. Liu, M.D. Zheng, *Compos. Sci. Technol.*, 2019, **184**, 107839.
- S4. Z.Q. Wang, P.F. Zhao, P.W. Li, S.D. Li, L.S. Liao, Y.Y. Luo, Z. Peng, D.N. He, Y. Cheng, *Compos. Part B*, 2019, **167**, 477-486.
- S5.Q.M. Hu, R.L. Yang, Z.C. Mo, D.W. Lu, L.L. Yang, Z.F. He, H. Zhu, Z.K. Tang, X.C. Gui, *Carbon*, 2019, **153**, 737-744.
- S6. D.T. Kuang, L.Z. Hou, S.L. Wang, H. Luo, L.W. Deng, J.L. Mead, H. Huang, M. Song, *Carbon*, 2019, **153**, 52-61.
- S7. R.W. Shu, G.Y. Zhang, X. Wang, X. Gao, M. Wang, Y. Gan, J.J. Shi, J. He, *Chem. Eng. J.*, 2017, **337**, 242-255.
- S8. Y.H. Chen, Z.H. Huang, M.M. Lu, W.Q. Cao, J. Yuan, D.Q. Zhang, M.S. Cao, J. Mater. Chem. A, 2015, 3, 12621-12625.
- S9. J. Qiu, T.T. Qiu, Carbon, 2015, 81, 20 -28.
- S10. R.W. Shu, W.J. Li, Y. Wu, J.B. Zhang, G.Y. Zhang, Chem. Eng. J., 2019, 362, 513-524.
- S11. M. Dalal, J.M. Greneche, B. Satpati, T.B. Ghzaiel, F. Mazaleyrat,
  R.S.Ningthoujam, P.K. Chakrabarti, ACS Appl. Mater. Interfaces, 2017, 9, 4083140845.
- S12. S.Y. Liu, L.F. Mei, X.L. Liang, L.B. Liao, G.C. Lv, S.F. Ma, S.Y. Lu, A. Abdelkader, K. Xi, ACS Appl. Mater. Interfaces, 2018, **10**, 29467-29475.