Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Flexible yet wear-resistant co-citrate elastomer for on-demand disposable patch sensor

Do-Gwan Kim¹, Dowon Ahn², Kang-Han Kim¹ and Yong-Cheol Jeong^{1,*}

 ¹Micro/Nano Scale Manufacturing R&D Department, KITECH 143, Hanggaulro, Sangnok-gu, Ansan, 15588, Republic of Korea
² Samsung SDI, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea

*To whom all correspondence should be addressed. E-mail: ycjeong@kitech.re.kr Tel: +82-31-8040-6197 Fax: +82-31-8040-6430

Figure S1. Synthesis route of poly(1,8-octanediol-*co*-citrate)

Citric acid

+

ΌΗ

Melting 165 °C, 10 min

Synthesis 140 °C, 30 min

POC prepolymer

1,8-octane diol

HO,

Figure S3. The FT-IR study of PECSQ. (A) FT-IR result of PECSQ sol, (B) FT-IR result of epoxy conversion through the curing process.

Figure S4. The FT-IR spectra of (A) citric acid and (B) 1,8-octanediol

Figure S5. The H-NMR spectra of (a) POC prepolymer (b) PECSQ sol, (c) thermally cured POC₉₀/PECSQ₁₀ elastomer

Figure S6. The change of glass transition temperature of (a) POC elastomer film as a function of baking time and POC/PECSQ elastomer film with respect to the solid contents of PECSQ

Figure S7. The degree of dissolution of POC elastomer film in DI water with different pH

Figure S8. The dissolution behavior of POC/PECSQ elastomer film with laundry detergent-based water at (A) 60 °C and (B) 80 °C.

Figure S9. (a) FT-IR results of POC/PECSQ elastomer and POC/PECSQ-degraded dissolving medium (b) The pH variation behavior of POC film upon dissolution at various dissolving medium as a function of time

