Supporting Information for

Emerging Negative Differential Resistance (NDR) Effects and Novel

Tunable Electronic Behaviors of the Broken-gap KAgSe/SiC₂ van der

Waals Heterojunction

Qiang Wang ^{a, b, c}, Yan Liang ^d, Hui Yao ^a, Jianwei Li ^a, Bin Wang ^{a, *} and Jian Wang ^{a, e *}

^a Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Re- public of China.

^b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shen- zhen 518060, China.

^cSchool of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China.

^d School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.

^e Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China.

*Corresponding Authors:

binwang@szu.edu.cn; jianwang@hku.hk_

Supplementary Figures

Figure S1. (color online) Band structures and PDos of (a) KAgSe and (b) SiC_2 at PBE level. In each panel, the Fermi level is set to zero.

Figure S2. Electrostatic potential (V) and potential barrier (δ V) at the different interfacial distances of 3.6 Å, 3.0 Å and 2.4 Å. The red horizontal dot dashed lines represent the position of the monolayer of KAgSe and SiC₂.