Electronic Supplementary Information ESI for:

Chirality Control in White-Light Emitting 2D Perovskites

Karla Trujillo-Hernández,[†]^a Germán Rodríguez-López,[†]^a Arian Espinosa-Roa,^a Jesús González-Roque,^a A. Paulina Gómora-Figueroa,^b Weiguo Zhang,^c P. Shiv Halasyamani,^c Vojtech Jancik,^{d,e} Milan Gembicky,^f Giuseppe Pirruccio,^g and Diego Solis-Ibarra^{*a}

^{*a.*} Instituto de Investigaciones en Materiales, Universidad Autónoma de México (UNAM, Coyoacán, 04510, Ciudad de México (México) Email: <u>diego.solis@unam.mx</u>

^{b.} Facultad de Ingeniería, Universidad Nacional Autónoma de México (UNAM), Coyoacán, 04510, Ciudad de México (México)

^{c.} Department of Chemistry, University of Houston, Houston, Texas 77204, United States.

^{*d.*} Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510, México.

^e Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco km. 14.5, Toluca, Estado de México, (México)

^{f.} Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, Mail Code 0358, La Jolla, San Diego, CA, 92093, United States

^{g.} Instituto de Física, Universidad Autónoma de México (UNAM, Coyoacán, 04510, Ciudad de México (México)

Table of Contents

1.	Figures and Tables	.2
2.	X- Ray diffraction data	.5
3.	References	12

1. Figures and Tables

Figure S1. FTIR of 1RS, 1R and 1S

Figure S2. TGA of 1R, 1RS and 1S

Figure S3. Hydrogen bonds (N–H \cdots Br) of 1S, 1R and 1RS. ^b C–H bonds are omitted for clarity. ^cDisorder was omitted for clarity.

Figure S4. Experimental and calculated powder X-ray diffraction patterns of 1RS, 1S and 1R.

Table S1. Reported Room-Temperature Photoluminescence Quantum Efficiencies (PLQE)

 and CIE Chromaticity Coordinates for White-Light-Emitting Perovskites

Perovskite	PLQE	CIE	Ref
(EDBE)PbBr ₄	9	(0.39, 0.42)	1
(EDBE)PbCl ₄	2	(0.33, 0.39)	1
(CyBMA)PbBr ₄	1.5	(0.23, 0.29)	2
(N-MEDA)PbBr ₄	0.5	(0.36, 0.41)	3
(N-MEDA)PbCl _{1.2} Br _{2.8}	1.5		3
(PEA) ₂ PbCl ₄	<1	(0.37, 0.42)	4

2. X- Ray diffraction data

Table S2. Crystal data and structure refinement details for 11
--

Formula	C18H28Br4N2Pb
Moiety formula	$Br_4Pb_2(C_0H_{14}N)$
Fw	799.25
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2$
Temp, K	100(2)
λ, Å	1.54178
a, Å	5.6828(2)
b, Å	36.9869(16)
c, Å	5.6490(3)
α , deg	90
β , deg	90
γ, deg	90
<i>V</i> , Å ³	1187.36(9)
Ζ	2
$\varrho, \mathrm{g}\cdot\mathrm{cm}^{-3}$	2.236
μ , mm ⁻¹	21.726
<i>F</i> (000)	744
Crystal size, mm ³	0.175 x 0.122 x 0.015
θ range for data collection, deg	1.194 to 72.799
index ranges	$-6 \le h \le 7$
	$-44 \le k \le 45$
	$-6 \le l \le 6$
No. of reflns collected	17048
No. of indep. reflns (R_{int})	2298 (0.0279)
No. of data / restraints / parameters	2298 / 0 / 127
GoF on F^2	1.229
$R_{1},^{a} w R_{2}{}^{b} (I > 2\sigma(I))$	0.0445, 0.1312
Abs. struct. par.	-0.022(8)
Largest diff. peak / hole, e·Å ⁻³	2.962 / -2.992

^a $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$.^b $wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum (F_o^2)^2]^{1/2}$.

Formula	$C_{18}H_{28}Br_4N_2Pb$
Moiety formula	$Br_4Pb, 2(C_9H_{14}N)$
Fw	799.25
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2$
Temp, K	100(2)
λ, Å	0.71073
a, Å	5.6922(1)
b, Å	36.9751(7)
c, Å	5.6533(1)
α , deg	90
β , deg	90
γ, deg	90
V, Å ³	1189.85(4)
Ζ	2
$\varrho, \mathrm{g}\cdot\mathrm{cm}^{-3}$	2.231
μ , mm ⁻¹	13.811
<i>F</i> (000)	744
Crystal size, mm ³	0.150 x 0.120 x 0.025
θ range for data collection, deg	2.203 to 26.369
index ranges	$-7 \le h \le 7$
	$-46 \le k \le 46$
	$-7 \le l \le 7$
No. of reflns collected	17450
No. of indep. reflns (R_{int})	2405 (0.0357)
No. of data / restraints / parameters	2405 / 0 / 127
GoF on F^2	1.038
$R_{1,a} w R_{2b} (I > 2\sigma(I))$	0.0146, 0.0300
Abs. struct. par.	0.004(5)
Largest diff. peak / hole, e·Å ⁻³	0.823 / -0.817

Table S3. Crystal data and structure refinement details for 1S

^a $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$.^b $wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum (F_o^2)^2]^{1/2}$.

Formula	$C_{18}H_{28}Br_4N_2Pb$
Moiety formula	$Br_4Pb, 2(C_9H_{14}N)$
Fw	799.25
Crystal system	orthorhombic
Space group	Pbca
Temp, K	100(2)
λ,Å	0.71073
a, Å	33.3990(5)
b,Å	8.0291(1)
c, Å	36.3814(5)
α , deg	90
β , deg	90
γ, deg	90
$V, Å^3$	9756.2(2)
Ζ	16
$\varrho, g \cdot cm^{-3}$	2.177
μ , mm ⁻¹	13.475
<i>F</i> (000)	5952
Crystal size, mm ³	0.4230 x 0.1422 x 0.1271
heta range for data collection, deg	2.668 to 29.195
index ranges	$-45 \le h \le 30$
	$-8 \le k \le 10$
	$-49 \le l \le 44$
No. of reflns collected	29461
No. of indep. reflns (R_{int})	11324 (0.0374)
No. of data / restraints / parameters	11324 / 4356/ 813
GoF on F^2	1.142
$R_{1,a} W R_{2b} (I > 2\sigma(I))$	0.0378, 0.0729
Largest diff. peak / hole, e·Å ⁻³	2.210 / -1.861

Table S4. Crystal data and structure refinement details for 1RS

^a $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$.^b $wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum (F_o^2)^2]^{1/2}$.

Table S5. Pb–Br bond lengths bonds for 1R

Pb1–Br1	2.9803(18)
Pb1-Br1#1	2.9804(18)
Pb1–Br2	2.992(4)
Pb1-Br2#2	2.980(4)
Pb1-Br2#3	2.980(4)
Pb1-Br2#1	2.992(4)
Pb1–Br3	2.9745(14)
Pb1-Br3#4	2.9745(14)
Pb1–Br3A	2.9816(16)
Pb1-Br3A#4	2.9816(16)

#1 - x + 1, -y + 1, z; #2 - x + 1, -y + 1, z - 1; #3 x, y, z - 1; #4 x - 1, y, z

Table S6. Pb–Br bond lengths bonds for 1S

1 S Pb–Br lengths/ Å

Pb1-Br1	2.9808(4)
Pb1–Br1#1	2.9809(4)
Pb1–Br2	2.9923(8)
Pb1–Br2#1	2.9922(8)
Pb1–Br2#2	2.9859(8)
Pb1–Br2#3	2.9859(8)
Pb1–Br3	2.9760(3)
Pb1-Br3#4	2.9760(3)
Pb1-Br3'#5	2.9865(3)
Pb1–Br3'	2.9865(3)

#1 -x+2, -y+1, z; #2 -x+2, -y+1, z+1; #3 x, y, z+1; #4 x+1, y, z; #5 x-1, y, z

Table S7. Pb–Br bond lengths bonds for	r 1RS
--	--------------

8	
1RS Pb–Br lengths/ Å	
Pb1-Br1	2.9802(5)
Pb1-Br2	2.9848(5)
Pb1-Br3	2.9307(6)
Pb1-Br4	3.0105(5)
Pb1—Br4#1	3.0266(5)
Pb1-Br5	3.0483(5)
Pb2—Br1	3.0482(5)
Pb2—Br2#2	3.0929(6)
Pb2—Br6	3.0234(6)
Pb2—Br7	2.9771(5)
Pb2—Br7#3	2.9843(5)
Pb2—Br8	2.9239(5)

#1 -x+1, y+1/2, -z+3/2; #2 x, y+1, z; #3 -x+1/2, y+1/2, z

Table S8. Geometric	al parameters	of hydrogen	bonds for 1R
---------------------	---------------	-------------	---------------------

		1 R			
D–H···A	Symmetry code	$d_{D-H}/\text{\AA}$	$d_{H \cdots A}/\text{\AA}$	$d_{D \cdots A}/\text{\AA}$	< _{DHA} / ^o
N1–H1A…Br1	x, y, z–1	0.91	2.52	3.426(19)	171.9
N1–H1B…Br2	x-1, y, z-1	0.91	2.66	3.516(17)	157.0
N1–H1B…Br2	-x+1, -y+1, z-1	0.91	2.97	3.417(16)	112.0
N1-H1B…Br3A	x-1, y, z-1	0.91	2.77	3.417(18)	129.2
N1–H1C····Br1		0.91	2.54	3.449(19)	175.7

Table S9. Geometrical parameters of hydrogen bonds for $\mathbf{1S}$

		1S			
D–H···A	Symmetry code	$d_{D-H}/Å$	$d_{H \cdots A} / \text{\AA}$	d _{D…A} /Å	< _{DHA} /°
N1–H1A…Br1	x-1, y, z-1	0.91	2.54	3.454(4)	176.4
N1–H1B…Br2		0.91	2.67	3.520(4)	156.2
N1–H1B…Br2	-x+1, -y+1, z	0.91	2.96	3.406(3)	112.2
N1-H1B…Br3	x, y, z–1	0.91	2.74	3.435(3)	134.0
N1-H1B…Br3'	x–1, y, z	0.91	2.80	3.415(4)	126.3
N1-H1C…Br1	x-1, y, z	0.91	2.52	3.423(4)	172.4

1RS							
D–H···A	Symmetry code	d _{D-H} /Å	d _{H…A} /Å	d _{D…A} /Å	< _{DHA} /°		
N1–H1A…Br8	x, y–1, z	0.91	2.70	3.53(4)	151.6		
N1–H1B…Br1		0.91	2.56	3.39(4)	151.8		
N1-H1C…Br8	-x+1/2, y-1/2, z	0.91	2.49	3.36(6)	161.2		
N1A-H1D…Br8	x, y–1, z	0.91	2.85	3.51(7)	130.8		
N1A-H1E…Br1		0.91	2.62	3.47(6)	155.0		
N1A-H1F…Br8	-x+1/2, y-1/2, z	0.91	2.49	3.35(9)	157.8		
N2-H2B···Br3		0.91	2.48	3.28(3)	146.6		
N2-H2C···Br4	-x+1, y+1/2, -z+3/2	0.91	2.96	3.503(16)	119.9		
N2-H2C···Br5	-x+1, y+1/2, -z+3/2	0.91	2.68	3.46(4)	144.4		
N2-H2D…Br2	x, y+1, z	0.91	2.59	3.47(4)	162.0		
N2A-H2E…Br3		0.91	2.54	3.44(4)	168.6		
N2A-H2F…Br4	x, y+1, z	0.91	2.80	3.57(4)	143.6		
N2A-H2F…Br4	-x+1, y+1/2, -z+3/2	0.91	3.04	3.468(19)	110.8		
N2A-H2F…Br5	-x+1, y+1/2, -z+3/2	0.91	2.91	3.45(4)	119.4		
N2A-H2G…Br2	x, y+1, z	0.91	2.50	3.37(4)	158.9		
N3-H3B…Br6		0.91	2.40	3.303(10)	170.7		
N3-H3C···Br5	x, y+1, z	0.91	2.49	3.316(15)	151.2		
N3-H3D…Br4	-x+1, y+1/2, -z+3/2	0.91	2.67	3.464(14)	146.2		
N3A-H3E…Br3	-x+1, y+1/2, -z+3/2	0.91	2.79	3.65(3)	158.0		
N3A-H3G…Br5	x, y+1, z	0.91	2.50	3.30(4)	147.5		
N4–H4B…Br5		0.91	2.42	3.266(12)	154.9		
N4-H4C…Br6	x, y–1, z	0.91	2.49	3.347(11)	156.5		
N4–H4D…Br1		0.91	2.91	3.497(10)	123.4		
N4–H4D…Br7	-x+1/2, y-1/2, z	0.91	2.85	3.445(10)	124.2		
N4A-H4E…Br6	x, y–1, z	0.91	2.54	3.19(6)	128.9		
N4A-H4F…Br7	-x+1/2, y-1/2, z	0.91	2.33	3.16(5)	152.4		
N4A-H4G…Br1	-	0.91	2.77	3.52(5)	141.0		

Table S10. Geometrical parameters of hydrogen bonds for 1RS

Table S11. Geometrical parameters of hydrogen bonds for (PEA)₂PbBr₄⁵

(PEA) ₂ PbBr ₄ ⁵					
D–H···A	d _{D-H} /Å	d _{H…A} /Å	d _{D…A} /Å	< _{DHA} /°	
N1-H1···Br1	0.89	3.18	3.508(5)	104	
N1-H3···Br2	0.89	2.54	3.411(5)	165	
N2—H13…Br6	0.89	3.17	3.509(5)	105	
N2—H14…Br7	0.89	2.54	3.416(5)	167	
N3-H26-Br7	0.89	2.71	3.448(6)	142	
N3-H27-Br2	0.89	2.62	3.486(6)	164	
N4—H37…Br4	0.89	2.68	3.465(5)	148	
N4-H39Br2	0.89	2.73	3.462(6)	140	

3. References

- 1 E. R. Dohner, A. Jaffe, L. R. Bradshaw and H. I. Karunadasa, *J. Am. Chem. Soc.*, 2014, **136**, 13154–13157.
- I. Neogi, A. Bruno, D. Bahulayan, T. W. Goh, B. Ghosh, R. Ganguly, D. Cortecchia, T. C. Sum, C. Soci, N. Mathews and S. G. Mhaisalkar, *ChemSusChem*, 2017, 10, 3765–3772.
- 3 E. R. Dohner, E. T. Hoke and H. I. Karunadasa, J. Am. Chem. Soc., 2014, **136**, 1718–1721.
- K. Thirumal, W. K. Chong, W. Xie, R. Ganguly, S. K. Muduli, M. Sherburne, M. Asta, S. Mhaisalkar, T. C. Sum, H. Sen Soo and N. Mathews, *Chem. Mater.*, 2017, 29, 3947–3953.
- 5 K. Shibuya, M. Koshimizu, F. Nishikido, H. Saito and S. Kishimoto, *Acta Crystallogr. Sect. E Struct.*, 2009, **65**,*m1323-m1324*.