Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Microwave-assisted selective heating to rapidly construct a nano-cracked hollow

sponge for stretch sensing

Pengju Liu^a, Wenhua Chen^{b, c*}

^a State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute

of Sichuan University, Chengdu 610065, China

^b College of Architecture and Environment, Sichuan University, Chengdu 610065,

China

^c National Engineering Research Centre for Flue Gas Desulfurization, Chengdu

610065, China

*Corresponding author, E-mail: scucwh@163.com (WH Chen)

Figure S1 Digital photos showing the uniform and stable GO and CNT/CS

suspensions.

Figure S2 Surface morphology of the coated backbone with one layer of GO/CNT (a)

and neat ME backbone (b).

Figure S3 Digital photo showing the integrated sensor (copper electrodes have been embedded in sensor).

Figure S4 The microstructure and morphology of MW-treated sponge upon 2 (a, b)

and 4 s (c, d) irradiation.

Figure S5 The electrical conductivity of MW-treated coated sponge with different coating layer of GO/CNT as a function of irradiation time.

Figure S6 SEM image showing the skeleton with microcrack caused by MW heating.

Figure S7 XPS results showing the element composition of GO/CNT@ME sponge

upon 0 (a), 6 (b) and 10 s (c) MW irradiation.

Figure S8 SEM images showing the hollow backbones in MW-treated sponge after

the degradation of ME matrix.

Figure S9 SEM images showing the structure of GO@ME (a, b) and CNT@ME (c, d)

sponge after 10 s MW irradiation.

Figure S10 Relative increase of GO, CNT, and GO/CNT coating mass on ME sponge with different number of bilayer.

Figure S11 Raman spectra of MW-treated GO/CNT@ME sponge after different

irradiation time and the related values of $I_{\text{D}}/I_{\text{G}}$

Figure S12 The formation and recovery of cracks in sensor during stretching-release process (bright regions representing the formed cracks among backbones).

Figure S13 A self-build equipment for evaluating the stretch sensing behavior of

MW-treated sponge sensors.

Sample	Conductivity before MW	Conductivity after MW	
	irradiation (S/m)	irradiation (S/m)	
GO@ME sponge	< 10 ⁻⁶	< 10 ⁻⁶	
CNT@ME sponge	5.3±0.2	4.0±0.5	
GO/CNT@ME sponge	0.57±0.06	38.1±3.0	

before and after MW irradiation (10 s)

Sensor	Minimum detected strain	Durability	
	(%)	(cycle)	Ref
rGO/CNT sponge	~1	>10000	This work
Carbonized silk fabric	~1	>10000	1
Fish-scale-like graphene	~0.1	>5000	2
MWCNTs/elastomer	-	>5000	3
SWNT/MWNT/TPU yarn	-	>2000	4
GnPs/silicon rubber	~2	>1000	5
Graphene/AgNPs/TPU	0.5	>1000	6
Binary rubber/graphene	~20	>300	7
TPU/CNTs/PDMS	<30	>700	8
CNT/TPU	0.5	>10 000	9

 Table S2 The comparison of sensitivity and durability of our sensor with other

 stretching sensors

Note: SWNT, single-walled carbon nanotube; TPU, thermoplastic polyurethane; GnPs, graphene platelets; PDMS, polydimethylsiloxane.

REFERENCES

- C. Wang, X. Li, E. Gao, M. Jian, K. Xia, Q. Wang, Z. Xu, T. Ren and Y. Zhang, *Advanced Materials*, 2016, 28, 6640-6648.
- 2. Q. Liu, J. Chen, Y. Li and G. Shi, ACS Nano, 2016, 10, 7901-7906.
- 3. L. Li, Y. Bai, L. Li, S. Wang and T. Zhang, *Advanced Materials*, 2017, **29**, 1702517.
- Y. H. Li, B. Zhou, G. Q. Zheng, X. H. Liu, T. X. Li, C. Yan, C. B. Cheng, K. Dai, C. T. Liu, C. Y. Shen and Z. H. Guo, *Journal of Materials Chemistry C*, 2018, 6, 13.
- 5. G. Shi, Z. H. Zhao, J. H. Pai, I. Lee, L. Q. Zhang, C. Stevenson, K. Ishara, R. J. Zhang, H. W. Zhu and J. Ma, *Advanced Functional Materials*, 2016, **26**, 7614-7625.
- 6. S. Chen, Y. Wei, X. Yuan, Y. Lin and L. Liu, Journal of Materials Chemistry C, 2016, 4, 4304-4311.
- 7. Y. Lin, S. Q. Liu, S. Chen, Y. Wei, X. C. Dong and L. Liu, *Journal of Materials Chemistry C*, 2016, 4, 6345-6352.
- L. Wang, Y. Chen, L. W. Lin, H. Wang, X. W. Huang, H. G. Xue and J. F. Gao, *Chemical Engineering Journal*, 2019, 362, 89-98.
- Y. J. Zhou, P. F. Zhan, M. N. Ren, G. Q. Zheng, K. Dai, L. W. Mi, C. T. Liu and C. Y. Shen, ACS Appl. Mater. Interfaces, 2019, 11, 7405-7414.