Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Highly sensitive flexible NO_2 sensor composed of vertically aligned 2D SnS_2 operating at room temperature

Jung Joon Pyeon,^{†,a,b} In-Hwan Baek,^{†,a,c} Young Geun Song,^a Gwang Su Kim,^{a,b} Ah-Jin Cho,^a Ga-Yeon Lee,^d Jeong Hwan Han,^e Taek-Mo Chung,^d Cheol Seong Hwang,^c Chong-Yun Kang,^{a,b,*}, and Seong Keun Kim^{a,*}

^aCenter for Electronic Materials, Korea Institute of Science and Technology, Seoul 02792, Korea.

^bKU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea

^cDepartment of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Korea

^dDivision of Advanced Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea

^eDepartment of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea

† These two authors equally contributed to this work.

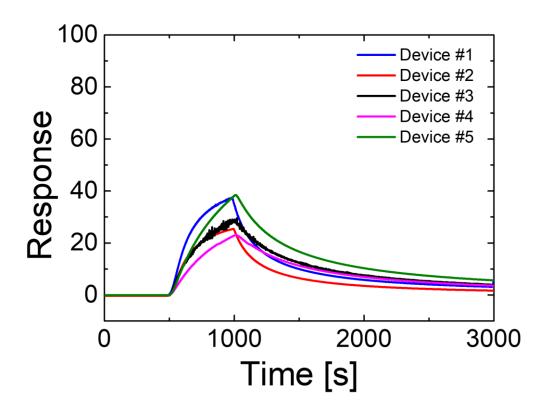


Figure S1. Variation in the response of five different SnS_2 gas sensors towards 100 ppb NO_2 at room temperature.

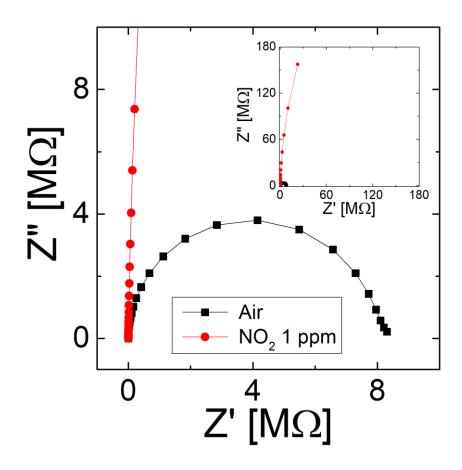


Figure S2. Nyquist plots of the SnS_2 sensors with and without exposure of 1 ppm NO₂. The AC impedance analysis was performed at a frequency range from 0.1 Hz to 1 MHz at room temperature.

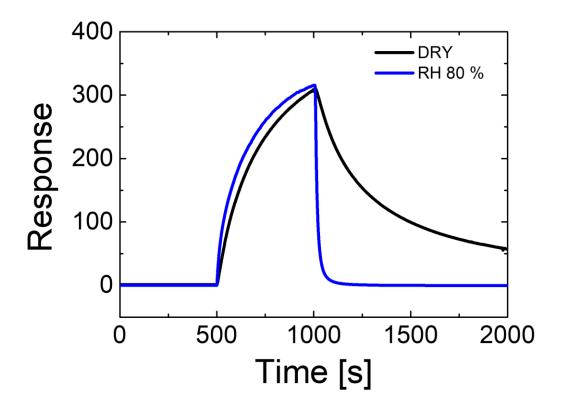


Figure S3. Variation in the response of the SnS_2 sensor towards 1 ppm NO₂ gas in atmosphere with relative humidity of 0 and 80 %, respectively.