SUPPORTING INFORMATION

Dielectric dispersion and superior thermal characteristics in isotopeenriched hexagonal boron nitride thin films: evaluation as thermally self-dissipating dielectrics for GaN transistor

Soon Siang Chng¹, Minmin Zhu^{2,*}, Zehui Du², Xizu Wang³, Matthew Whiteside¹, Zhi Kai Ng¹, Maziar Shakerzadeh¹, Siu Hon Tsang², and Edwin Hang Tong Teo^{1,*}

 ¹ School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
 ² Temasek Laboratories, Research Techno Plaza, 50 Nanyang Drive, Singapore 637553
 ³ Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634

Email: mmzhu@ntu.edu.sg or htteo@ntu.edu.sg

Sample Power Power Process Process Peak Peak Discharge Discharge Current of Current of Voltage of Name Density of Density of **Current to** Current to Voltage of B¹⁰ Target B¹¹ Target **B¹⁰ Target B¹¹ Target B¹⁰ Target** B¹¹ Target B¹⁰ Target B¹¹ Target / W cm⁻² / W cm⁻² / mA / mA / A / A / V / V Pure B^{10} 79.77 N/A 450 N/A 9 N/A 645 N/A Pure B¹¹ N/A 65.79 N/A 400 N/A 9 N/A 600 50% B¹⁰ 450 764 647 76.48 76.48 363 5 5 50% B¹¹ 60% B¹⁰ 82.24 54.82 400 330 5 4 751 611 $40\% B^{11}$ $80\% B^{10}$ 27.96 524 170 11 775 607 109.65 2 $20\% B^{11}$ Sample Name Peak Current **Power Density** Process Discharge of B Target / Current to B of B Target / A Voltage of B W cm⁻² Target / V Target / mA 19.1% B¹⁰ $80.1\% B^{11}$ 73.58 421 7 784 Target is Pure Boron Target of Natural Abundance

Table S1 Table of Deposition Parameters for all the samples

FIG. S1 (a) A schematic of the dual-sputtering HIPIMS system, with the vacuum pumps shown. (b) A schematic of a typical HIPIMS pulse supplied by the power source. The peak current as shown is around 10A and the voltage supplied to the target is around -1000V.

FIG. S2 (a) Raman and (b) FTIR spectra of h-B^{NAT}N thin films.

FIG. S3 Percentage increment in thermal conductivities for the h-BN samples with different isotopic compositions at 300 °C as compared to room temperature.

FIG. S4 FTIR spectra of h-B¹⁰N, h-B¹¹N and h-B^{NAT}N on GaN substrate.

Sample Label	Post-Deposition Percentage Change in Sheet Concentration / %	Post-Deposition Percentage Change in Hall Mobility / %	Post-Deposition Percentage Change in Sheet Concentration / %
h-B ¹⁰ N	-60.662	24.6732	17.34394
h-B ¹¹ N	-68.5439	56.3964	-36.3717
h-B ^{NAT} N	-14.6301	50.6982	-79.626

 Table S2 Post-deposition percentage change in electronic properties of h-BN thin films deposited on GaN substrates