Supporting Information

Intrinsically mechanical properties of polymeric semiconductor

Xiang An,^a Kai Wang^a, Lubing Bai,^a Chuanxin Wei,^a Man Xu,^b Mengna Yu,^b Yamin Han,^a Ning Sun,^a Lili Sun,^a Jinyi Lin,^{*a} Xuehua Ding,^a Linghai Xie,^b Qi Zhang^b, Tianshi Qin,^a and Wei Huang^{*ac}

^aKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.

^bCenter for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

^c Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China

*To whom corresponding should be addressed. E-mail: <u>wei-huang@njtech.edu.cn</u>, <u>iamwhuang@njupt.edu.cn</u> (Wei Huang), <u>iamjylin@njtech.edu.cn</u> (Jinyi Lin)

Table S1.	The Y	'oung's	modulus	and h	ardness	of six	polymers.
						0 - 10	

		Constant Displacement Rate ^a							
Sample	$h_{max} = 6$	$h_{max} = 60 \text{ nm}$		$h_{max} = 120 \text{ nm}$		$h_{max} = 180 \text{ nm}$		Constant Load Kate	
	E_r (GPa)	H (GPa)	E_r (GPa)	H (GPa)	E_r (GPa)	H (GPa)	E_r (GPa)	H (GPa)	
PFO	20.57 ± 1.25	1.36 ± 0.13	25.06 ± 0.20	1.79 ± 0.03	23.32 ± 0.21	1.68 ± 0.03	22.48 ± 0.34	1.48 ± 0.07	
F8BT	22.34 ± 1.46	1.82 ± 0.06	23.79 ± 0.38	1.87 ± 0.10	24.92 ± 0.28	1.92 ± 0.01	22.65 ± 0.53	1.70 ± 0.03	
PVK	3.01 ± 0.17	0.20 ± 0.02	2.44 ± 0.05	0.17 ± 0.01	13.48 ± 0.72	0.46 ± 0.01	2.82 ± 0.32	0.07 ± 0.01	
P3HT	16.51 ± 2.54	0.71 ± 0.27	18.13 ± 1.86	0.78 ± 0.17	18.65 ± 0.42	0.82 ± 0.03	15.01 ± 1.38	0.57 ± 0.15	
PTB7-Th	3.06 ± 0.18	0.11 ± 0.01	3.45 ± 0.11	0.07 ± 0.01	6.84 ± 0.22	0.09 ± 0.01	3.93 ± 0.27	0.14 ± 0.01	
MEH-PPV	12.96 ± 1.48	0.38 ± 0.04	13.91 ± 0.54	0.50 ± 0.02	20.90 ± 0.97	0.58 ± 0.06	15.59 ± 0.78	0.43 ± 0.01	

^{*a*}The loading time is 5 s. ^{*b*}The loading time is 5 s and P_{max} is set according to the result at

constant displacement rate. The load rate operated on PFO, F8BT, PVK, P3HT, PTB7-Th and

MEH-PPV was 24 μ N/s, 32 μ N/s, 2.4 μ N/s, 12 μ N/s, 4 μ N/s and 14 μ N/s respectively.

Table S2. The mechanical parameters of six polymers obtained from three-parameter

models.

$P_0 (\mu N)$	P_1 (μ N)	τ (s)	D_0 (nm)	D_1 ' (nm)	τ' (s)	$P_1:P_0$	$D_1':D_0$
51.29 ± 2.00	90.15 ± 2.11	3.56 ± 0.20	4.30 ± 0.04	27.50 ± 0.02	1.20 ± 0.03	1.76:1	6.40:1
26.84 ± 0.57	140.05 ± 0.65	2.13 ± 0.09	3.88 ± 0.99	40.90 ± 0.02	1.51 ± 0.07	5.22:1	10.54:1
4.64 ± 0.03	18.12 ± 0.04	0.93 ± 0.02	2.79 ± 0.15	10.06 ± 0.02	1.79 ± 0.18	3.91:1	3.61:1
17.17 ± 0.06	33.02 ± 0.08	0.99 ± 0.01	5.41 ± 0.04	11.80 ± 0.02	1.17 ± 0.02	1.92:1	2.18:1
5.77 ± 0.03	11.89 ± 0.03	0.87 ± 0.01	15.05 ± 0.11	14.14 ± 0.02	1.68 ± 0.02	2.06:1	0.94:1
41.63 ± 0.11	39.73 ± 0.18	1.00 ± 0.11	13.62 ± 0.10	10.83 ± 0.02	1.67 ± 0.02	0.95:1	0.80:1
	$\begin{array}{c} P_0 \ (\mu \mathrm{N}) \\ \hline 51.29 \pm 2.00 \\ 26.84 \pm 0.57 \\ 4.64 \pm 0.03 \\ 17.17 \pm 0.06 \\ 5.77 \pm 0.03 \\ 41.63 \pm 0.11 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Figure S1. The chemical structure of (A) PFO, (B) F8BT, (C) PVK, (D) P3HT, (E) PTB7-Th and (F) MEH-PPV.

Figure S2. The nano-indentation test curves of quartz substrate at constant displacement rate mode. (E_r = 76.07 ± 5.00 GPa and H= 11.18 ± 0.84 GPa.) The blue, green and orange curve represents \mathbf{h}_{max} = 60 nm, 120 nm and 180 nm, respectively.

Figure S3. The nano-indentation test curves of (A) PFO, (B) F8BT, (C) PVK, (D) P3HT, (E) PTB7-Th and (F) MEH-PPV at constant displacement rate mode. The blue, green and orange curves represent h_{max} = 60 nm, 120 nm and 180 nm, respectively.

Figure S4. The E_r and H of six polymers at $h_{max} = (A) 60$ nm, (B) 120 nm and (C) 180 nm.