Supporting Information

Metal Free Efficient Dye Sensitized Solar Cells based on Thioalkylated Bithiophenyl Organic Dyes

Fang-Sian Lin, ‡*a* Pragya Priyanka, ‡*b* Miao-Syuan Fan, ‡*c* Sureshraju Vegiraju, ‡*b*
Jen-Shyang Ni, ‡*b* Yi-Ching Wu, ‡*b* Yi-Hsien Li, ‡*b* Gene-Hsiang Lee, ‡*d* Yamuna Ezhumalai, ‡*e* Ru-Jong Jeng, ‡*a* Ming-Chou Chen, ‡*b* and Kuo-Chuan Ho ‡*ac*

‡ F. S. Lin, P. Priyanka, M. S. Fan, and S. Vegiraju contributed equally to this work.

a Institute of Polymer Science and Engineering National Taiwan University, Taipei 10617, Taiwan. E-mail: rujong@ntu.edu.tw

b Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan 32001, Taiwan. E-mail: mcchen@ncu.edu.tw

c Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan. E-mail: kcho@ntu.edu.tw

d Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan.

e Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India. E-mail: yamuchemist@gmail.com
Table of Contents

Source of Materials

Scheme S1. Synthetic route for the dyes studied in this work.

Figure S1. 1HNMR spectra of compound 9a.

Figure S2. 1HNMR spectra of compound 9b.

Figure S3. 1HNMR spectra of compound 9c.

Figure S4. 1HNMR spectra of compound 9d.

Figure S5. 1HNMR spectra of compound 9e.

Figure S6. 1HNMR spectra of compound 10a.

Figure S7. 1HNMR spectra of compound 10b.

Figure S8. 1HNMR spectra of compound 10c.

Figure S9. 1HNMR spectra of compound 10d.

Figure S10. 1HNMR spectra of compound 10e.

Figure S11. 1HNMR spectra of compound 1.

Figure S12. 1HNMR spectra of compound 2.

Figure S13. 1HNMR spectra of compound 3.

Figure S14. 1HNMR spectra of compound 4.

Figure S15. 1HNMR spectra of compound 5.
Source of materials:

Titanium(IV) tetraisoproproxide (TTIP, >98%) and chenodeoxycholic acid (CDCA, ≥ 95%) were received from Sigma Aldrich. Cis-diisothiocyanato bis(2,2’-bipyridyl-4,4’-dicarboxylato) ruthenium (II) bis(tetrabutylammonium) (N719 dye), transparent TiO₂ paste (TL paste, Ti-nanoxide HT/SP, average diameter ~20 nm), and Surlyn® (SX1170-25, 25 μm) were acquired from Solaronix (S.A., Aubonne, Switzerland). Tert-butyl alcohol (tBA, 96%) and 4-tert-butylpyridine (tBP, 96%) were obtained from Acros. Acetonitrile (ACN, 99.99%) and dichloromethane (DCM, 99.8%) were purchased from J. T. Baker. Lithium iodide (LiI, synthetical grade), iodine (I₂, synthetical grade), and poly(ethylene glycol) (PEG, MW~20,000) were obtained from Merck. 1,2-Dimethyl-3-propylimidazolium iodide (DMPII) was brought from Tokyo Chemical Industry Co. Ltd. 3-Methoxypropionitrile (MPN, 99%) was bought from Alfa Aesar. Commercial light-scattering TiO₂ particles (ST-41) with an average particle size of 200 nm were acquired from Ishihara Sangyo, Ltd.
Synthesis details:

![Scheme S1. Synthetic route for the dyes studied in this work.]

Compound 9a:

The title compound was obtained as a light yellow solid (yield = 67%). 1H NMR (300 MHz, CDCl$_3$): δ 7.48 (d, $J = 6.6$ Hz, 2 H), 7.33-7.28 (m, 4 H), 7.21 (s, 1 H), 7.17-7.06 (m, 9 H), 2.89-2.81 (m, 4 H), 1.66-1.54 (m, 4 H), 1.48-1.35 (m, 4 H), 0.88 (t, $J = 7.2$ Hz, 6 H); 13C NMR (125 MHz, CDCl$_3$): 147.87, 147.35, 144.17, 134.46, 132.88, 132.76, 132.36, 131.89, 130.39, 129.39, 127.25, 126.56, 125.73, 124.70, 123.36, 112.62, 35.93, 35.91, 31.67, 31.58, 21.89, 21.85, 13.67. HRMS (m/z, FAB+) calcd for C$_{34}$H$_{34}$BrNS$_3$ 663.0757, found 663.0762.

Compound 9b:

The title compound was obtained as a light yellow solid (yield = 64%). 1H NMR (300 MHz, CDCl$_3$): δ 7.48 (br, 2 H), 7.32-7.27 (m, 5 H), 7.16-7.04 (m, 9 H), 2.74-2.71 (br, 4 H), 1.87-1.78
(m, 1H), 1.44-1.34 (m, 1H), 0.99 (d, \(J = 6.9 \) Hz, 6 H); HRMS (m/z, FAB+) calcd for C\(_{34}\)H\(_{34}\)BrNS\(_{4}\) 663.0757, found 663.0764.

Compound 9c:

The title compound was obtained as a light yellow solid (yield = 65%). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 7.48 (d, \(J = 8.7 \) Hz, 2 H), 7.30-7.25 (m, 4H), 7.21 (s, 1H), 7.13-7.06 (m, 9 H), 1.29 (d, \(J = 7.2 \) Hz, 18 H); HRMS (m/z, FAB+) calcd for C\(_{34}\)H\(_{34}\)BrNS\(_{4}\) 663.0757, found 663.0766.

Compound 9d:

The title compound was obtained as a light yellow solid (yield = 59 %). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 7.46 (d, \(J = 6.6 \) Hz, 2 H), 7.30-7.25 (m, 4H), 7.18 (s, 1H), 7.11-7.04 (m, 9 H), 3.01-2.97 (m, 2 H), 1.94-1.81 (m, 4 H), 1.72-1.59 (m, 4 H), 1.31-1.18 (m, 12 H); \(^{13}\)C NMR (125MHz, CDCl\(_3\)): 147.82, 147.35, 143.48, 136.96, 134.41, 132.92, 130.97, 130.11, 129.37, 127.37, 127.31, 126.52, 124.66, 123.41, 123.31, 112.28, 48.66, 48.62, 33.37, 33.33, 28.29, 26.79, 26.08, 26.01, 25.69, 25.66, 17.31, 14.14, 13.62. HRMS (m/z, FAB+) calcd for C\(_{38}\)H\(_{38}\)BrNS\(_{4}\) 715.1070, found 715.1070.
Compound 9e:

The title compound was obtained as a light yellow solid (yield = 54 %). 1H NMR (300 MHz, CDCl$_3$): δ 7.38 (d, $J = 8.5$ Hz, 2 H), 7.28-7.13 (m, 14H), 7.10-6.89 (m, 9H), 6.86 (s, 1H); HRMS (m/z, FAB+) calcd for C$_{38}$H$_{26}$BrNS$_4$, 703.0131, found 703.0132.

Compound 10a: The title compound was obtained as a yellow solid (yield = 76 %). 1H NMR (300 MHz, CDCl$_3$): δ 9.89 (s, 1 H), 7.81-7.80 (m, 1 H), 7.72-7.70 (m, 1H), 7.49-7.43 (m, 3H), 7.34-7.30 (m, 4 H), 7.25-7.07 (m, 9 H), 2.93-2.86 (m, 4H), 1.66-1.20 (m, 8 H), 0.88 (t, $J=7.2$Hz, 6H); 13C NMR (125MHz, CDCl$_3$): 182.81, 148.30, 147.68, 146.66, 144.83, 142.35, 137.61, 135.39, 135.06, 133.43, 133.12, 130.79, 129.84, 129.77, 127.51, 126.93, 126.18, 125.10, 124.77, 123.75, 123.65, 36.78, 36.71, 32.32, 29.95, 29.76, 29.59, 29.13, 23.09, 14.52. HRMS (m/z, FAB+) calcd for C$_{39}$H$_{37}$NOS$_3$, 695.1479, found 695.1475.
Compound 10b: The title compound was obtained as a yellow solid (yield = 72 %). 1H NMR (500 MHz, CDCl$_3$) δ 9.90 (s, 1 H), 7.71 (d, $J = 3.8$ Hz, 1 H), 7.51-7.48 (m, 2H), 7.35-7.29 (m, 6H), 7.25-7.23 (br, 1H), 7.17-7.15 (m, 4H), 7.11-7.07 (m, 4H), 2.79 (br, 4H), 1.91-1.81 (m, 2H), 1.03 (d, $J = 6.5$ Hz, 12H); 13C NMR (125MHz, CDCl$_3$): 182.47, 147.95, 147.32, 146.28, 144.43, 141.97, 137.31, 134.99, 134.53, 133.38, 133.03, 130.25, 129.40, 129.23, 127.13, 126.56, 126.45, 125.77, 124.73, 124.43, 123.39, 123.30, 45.38, 45.30, 29.73, 28.70, 28.67, 27.87, 26.87, 22.01, 17.58, 13.65. HRMS (m/z, FAB+) calcd for C$_{39}$H$_{37}$NOS$_5$ 695.1479, found 695.1485.

Compound 10c: The title compound was obtained as a yellow solid (yield = 69 %). 1H NMR (300 MHz, CDCl$_3$) δ 9.87 (s, 1 H), 7.69 (d, $J = 3.3$ Hz, 1 H), 7.49 (d, $J = 7.8$ Hz, 2H), 7.36 (s, 1H), 7.30-7.24 (m, 7 H), 7.14-7.03 (m, 8 H), 1.30 (d, $J = 3.3$ Hz, 18 H); 13C NMR (125MHz, CDCl$_3$): 182.46, 147.91, 147.32, 146.45, 144.14, 141.96, 141.01, 137.27, 136.67, 133.80, 133.58, 130.35, 129.95, 129.85, 129.38, 127.19, 126.54, 124.76, 124.36, 123.39, 123.36, 48.69, 48.65, 31.21, 31.16. HRMS (m/z, FAB+) calcd for C$_{39}$H$_{37}$NOS$_5$ 695.1479, found 695.1486.
Compound 10d: The title compound was obtained as a yellow solid (yield = 65 %). 1H NMR (500 MHz, CDCl₃): δ 9.89 (s, 1 H), 7.71 (d, J = 3.8 Hz, 1 H), 7.52 (d, J = 8.4 Hz, 2H), 7.37 (s, 1H), 7.33-7.29 (m, 5 H), 7.26 (s, 1H), 7.16 (d, J = 7.9 Hz, 4 H), 7.13-7.07 (m, 4 H), 3.12-3.06 (m, 2H), 1.97 (br, 4H), 1.79 (br, 4H), 1.71-1.62 (m, 4H), 1.42-1.38 (m, 4H), 1.34-1.27 (m, 4H); 13C NMR (125MHz, CDCl₃): 182.46, 147.92, 147.33, 146.39, 143.87, 141.94, 137.35, 137.23, 134.52, 132.98, 131.23, 130.92, 129.41, 127.51, 127.19, 126.57, 124.72, 124.44, 123.40, 123.36, 48.83, 48.77, 33.42, 33.37, 29.74, 27.90, 26.89, 26.09, 26.02, 25.71, 17.60, 13.68. HRMS (m/z, FAB+) calcd for C₄₃H₄₁NOS₅ 747.1792, found 747.1801.

Compound 10e: The title compound was obtained as a yellow solid (yield = 63 %). 1H NMR (300 MHz, CDCl₃): 9.86 (s, 1 H), 7.66 (s, 1 H), 7.40 (d, J = 7.5 Hz, 2H), 7.26-7.14 (m, 15 H), 7.13-7.05 (m, 10 H); This material was insufficiently soluble to obtain a 13C NMR spectrum. HRMS (m/z, FAB+) calcd for C₄₃H₂₉NOS₅ 735.0853, found 735.0859.
Compound 1: The title compound was obtained as a reddish brown solid (yield = 83 %). 1H NMR (300 MHz, CDCl$_3$) δ 8.09 (s, 1H), 7.68 (d, J = 4.2 Hz, 1H), 7.62-7.59 (m, 3H), 7.33 (t, J = 8.1 Hz, 4H), 7.11-7.04 (m, 5H), 6.98 (d, J= 8.7 Hz, 2 H), 2.96 (t, J= 6.6Hz, 4H), 1.54-1.45 (m, 4H), 1.40-1.30 (m, 4H), 0.82 (t, J= 7.2Hz, 6H); This material was insufficiently soluble to obtain a 13C NMR spectrum. HRMS (m/z, FAB+) calcd for C$_{42}$H$_{38}$N$_2$O$_2$S$_5$ 762.1537, found 762.1530.

Compound 2: The title compound was obtained as a reddish brown solid (yield = 82 %). 1H NMR (300 MHz, CDCl$_3$) δ 8.20 (s, 1H), 7.78 (d, J= 3 Hz, 1H), 7.64-7.55 (m, 4H), 7.36-7.31 (m, 4H), 7.12-6.97 (m, 9H), 2.87 (d, J= 3.9 Hz, 4H), 1.76-1.65 (m, 2H), 0.93 (t, J= 6.3Hz, 12H); This material was insufficiently soluble to obtain a 13C NMR spectrum. HRMS (m/z, FAB+) calcd for C$_{42}$H$_{38}$N$_2$O$_2$S$_5$ 762.1537, found 762.1530.
Compound 3: The title compound was obtained as a reddish brown solid (yield = 74%). 1H NMR (300 MHz, CDCl$_3$) δ 8.14 (s, 1 H), 7.72 (d, J = 3.9 Hz, 1 H), 7.62 (d, J=8.7, 2H), 7.57 (d, J=3.9 Hz, 1H), 7.48 (s, 1H), 7.44 (s, 1H), 7.33 (t, J = 7.8 Hz, 4H), 7.11-7.04 (m, 6H), 6.98 (d, J= 8.7 Hz, 2 H), 1.24 (s, 18H); This material was insufficiently soluble to obtain a 13C NMR spectrum. HRMS(m/z, FAB+) calcd for C$_{42}$H$_{38}$N$_2$O$_2$S$_5$ 762.1537, found 762.1530.

![Image of Compound 3]

Compound 4: The title compound was obtained as a reddish brown solid (yield = 67 %). 1H NMR (300 MHz, CDCl$_3$) δ 8.14 (s, 1H), 7.74 (d, J = 3 Hz, 1H), 7.64-7.53 (m, 6H), 7.34 (t, J = 7.2 Hz, 3 H), 7.12-7.05 (m, 8H), 3.01-2.97 (m, 2 H), 1.94-1.81 (m, 4 H), 1.72-1.59 (m, 4 H), 1.31-1.18 (m, 12 H); This material was insufficiently soluble to obtain a 13C NMR spectrum. HRMS(m/z, FAB+) calcd for C$_{46}$H$_{42}$N$_2$O$_2$S$_5$ 814.1850, found 814.1850.

![Image of Compound 4]

Compound 5: The title compound was obtained as a red solid (yield = 58 %). 1H NMR (300 MHz, CDCl$_3$) δ 8.09 (br, 1H), 7.69 (br, 1H), 7.54-7.49 (br, 3H), 7.43 (br, 1H), 7.33 (br, 8 H), 7.21-7.20 (br, 6 H), 7.06-7.03 (br, 7H), 6.95-6.92 (br, 2H); This material was insufficiently soluble to obtain a 13C NMR spectrum. HRMS(m/z, FAB+) calcd for C$_{46}$H$_{36}$N$_2$O$_2$S$_5$ 802.0911, found 802.0912.
NMR Spectra:

Figure S1. 1HNMR spectra of compound 9a.
Figure S2. 1HNMR spectra of compound 9b.

Figure S3. 1HNMR spectra of compound 9c.
Figure S4. 1HNMR spectra of compound 9d.

Figure S5. 1HNMR spectra of compound 9e.
Figure S6. 1HNMR spectra of compound 10a.

Figure S7. 1HNMR spectra of compound 10b.
Figure S8. 1HNMR spectra of compound 10c.

Figure S9. 1HNMR spectra of compound 10d.
Figure S10. 1HNMR spectra of compound 10e.

Figure S11. 1HNMR spectra of compound 1.

S16
Figure S12. 1HNMR spectra of compound 2.

Figure S13. 1HNMR spectra of compound 3.
Figure S14. 1HNMR spectra of compound 4.

Figure S15. 1HNMR spectra of compound 5.