Abnormal current dependence of high-level reverse intersystem crossing
induced by Dexter energy transfer from hole-transporting layer

Xiantong Tang, a Ruiheng Pan, b Jing Xu, a Weiyao Jia, a Fenlan Qu, a Xi Zhao, a and Zuhong Xiong a

a School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China
b Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China

Corresponding Authors:
zhxiong@swu.edu.cn
Supporting Table S1

Table S1 Energy levels and triplet energies of the used organic functional materials

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
<th>T₁ (eV)</th>
<th>T₂ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-MTDATA¹</td>
<td>-5.1</td>
<td>-2.0</td>
<td>2.70</td>
<td>-</td>
</tr>
<tr>
<td>mCP₂,₃</td>
<td>-5.8</td>
<td>-2.3</td>
<td>2.93</td>
<td>-</td>
</tr>
<tr>
<td>BCP₄,₅</td>
<td>-6.7</td>
<td>-3.2</td>
<td>2.6</td>
<td>-</td>
</tr>
<tr>
<td>Rubrene₆,₇,₈</td>
<td>-5.4</td>
<td>-3.2</td>
<td>1.14</td>
<td>2.40</td>
</tr>
</tbody>
</table>

Supporting Text S1

Generally speaking, the simplified kinetic scheme for the SF process⁹ in rubrene can be described as S₁+S₀ ⇌¹(TT) ⇌T₁+T₁ because S₁ and 2T₁ are nearly resonant in energy, where ¹(TT) represents an intermediate triplet pair. The ¹(TT) includes nine substates with equal probability, but the rate (kₕiss) of singlet fission is only determined by the number (Nₕ) of ¹(TT) carrying singlet character. When the applied field B equals to zero, three of the nine substates for ¹(TT) states possess singlet character (i.e., Nₕ=3). Within low magnetic field range (|B|<20 mT), the Zeeman energy induced by the magnetic field (≈gₑB) is less than zero-field splitting energy, and Nₕ rises with increasing B. Thus, kₕiss increases gradually and the MEL reduces slightly with B. When the field B has the same energy as the zero-field splitting, Nₕ increases to nine (i.e., Nₕ=9) and the MEL reaches to a minimum. At 20 mT≤|B|≤41 mT, Nₕ starts to decrease and the MEL increases and reaches to the zero-field value at 41 mT. When B is markedly larger than the zero-field splitting, Nₕ finally reduces to 2 and kₕiss decreases pronouncedly, leading to tremendously enhanced MEL in our rubrene-based OLEDs.
Supporting Figures

Fig. S1 (a) Energy level alignments of device A. (b) The fingerprint MEL curves corresponding different microscopic mechanisms. (c) Current-dependent MC responses for device A1 at room temperature.

Fig. S2 The schematic of energy transfer and microscopic mechanism in device A1.

Fig. S3 Current-dependent EL spectra of device A2.
Fig. S4 Current-dependent MEL responses of device A1 at low temperatures. (a) 100 K. (b) 20 K.

Fig. S5 Temperature-dependent EL spectra for device A1 at 100 µA.

Fig. S6 MEL_{LFE} values as a function of injection current for devices B1 and B2.
Fig. S7 Current-dependent MEL curves for devices measured by adding filter with 520 nm.

(a) Device C1. (b) Device C2.

Fig. S8 Normalized EL spectra for devices C1 and C2 measured by adding filter with 520 nm.

References

5 S. I. Yoo, J. A. Yoon, N. H. Kim, J. W. Kim, H. W. Lee, Y. K. Kim, G. F. He and W. Y. Kim,