ELECTRONIC SUPLEMENTARY INFORMATION

Temperature Evolution of (quinuclidinium)[FeCl₄]; a Plastic/Polar Magnetic Hybrid Compound with Giant Dielectric Constant

Palmerina González-Izquierdo, *^{a,b} Oscar Fabelo, *^b Laura Canadillas-Delgado,^b Garikoitz Beobide, ^{c,d} Oriol Vallcorba,^e Manuel Sánchez-Andújar,^t María Teresa Fernández-Díaz^b and Imanol de Pedro *^a

^a CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander.

^b Institut Laue-Langevin, BP 156X, F-38042 Grenoble Cedex, France.

^c Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, E-48080, Bilbao, Spain.

^d Basque Ctr Mat Applicat & Nanostruct, BCMat, UPV EHU Sci Pk, Leioa 48940, Spain.

^e ALBA Synchrotron Light Source, Cerdanyola del Vallés, Barcelona, Spain.

^f QuiMolMat Group, Department of Chemistry, Faculty of Science and Advanced Scientific Research Center (CICA), Zapateira, University of A Coruna, 15071 A Coruna, Spain.

Corresponding Authors: E-mails: depedrovm@unican.es; fabelo@ill.fr; gonzalez-izquierdo@ill.fr

Contents

Table S1: Crystallographic data and single-crystal refinement details of (quinuclidinium)[FeCl₄] at 300 and 100 K from the refinement of the X-ray single-crystal data.

Table S2: Crystallographic data and single-crystal refinement details of $(quinuclidinium)[FeCl_4]$ at 10, 250 and 295 K from the refinement of the neutron single-crystal data.

Table S3: Relevant distances of (quinuclidinium)[FeCl₄] at 10 K.

Table S4: Relevant distances of (quinuclidinium)[FeCl₄] at 250 K.

Table S5: Relevant distances of (quinuclidinium)[FeCl₄] at 295 K.

Fig. S1. FTIR and Raman (inset) spectra of (quinuclidinium)[FeCl₄].

Fig. S2. DSC-thermogram of (quinuclidinium)[FeCl₄]. Heating rate: 10 K/min.

Fig. S3. Rietveld refinement at 300 K (a) and 300 K after increasing the temperature up to 470 K (b). The peaks corresponding to the second phase are not observed in the pattern after the annealing. Observed and calculated patterns are represented by red points and by a solid black line, respectively. Positions of the Bragg reflections are represented by vertical green bars. The observed-calculated difference pattern is depicted as a blue line at the bottom of the figure.

Fig. S4. (Left) D1B data at 10 (red) and 1.4 K (blue). (Right) Evolution of the main magnetic peak as function of temperature.

	Phase III @ 100 K	Phase II @ 300 K
Empirical formula	C7H13Cl4FeN1	C7H13Cl4FeN1
Formula weight	308.84	308.84
Crystal system	orthorhombic	orthorhombic
Space group	Pbca	$Pbc2_1$
<i>a</i> (Å)	13.1204(3)	6.6991(2)
<i>b</i> (Å)	12.6450(4)	13.1984(5)
<i>c</i> (Å)	14.7155(5)	14.6266(5)
V (Å ³)	2441.41(13)	1293.25(8)
Ζ	8	4
ρ (g·cm ⁻³)	1.686	1.591
wavelength (Å ⁻¹)	0.71073	0.71073
Reflections [I> $2\sigma(I)$] 2246	2069
Reflections [all data	.] 2606	2619
parameters	121	118
Goodness of fit (S) ^a	1.178	1.044
$R_1^{b/w}R^{2c}$ [I>2 σ (I)]	0.0640 / 0.1203	0.0547 / 0.1740
R_1^{b}/wR^{2c} [all data]	0.0731 / 0.1244	0.0680 / 0.5602
$\frac{1}{2}$ 2)2 / (NT NT)1/2 h	$\mathbf{D} = \mathbf{\nabla} \mathbf{\Gamma} = \mathbf{\Gamma} / \mathbf{\nabla} \mathbf{\Gamma} $	$(D) = (\overline{\Sigma} - (E^2))^2$

Table S1: Crystallographic data and single-crystal refinement details of (quinuclidinium)[FeCl₄] at 300 and 100 K from the refinement of the X-ray single-crystal data.

^a S = $[\sum w(F_0^2 - F_c^2)^2 / (N_{obs} - N_{param})]^{1/2}$. ^b R₁ = $\sum ||F_0| - |F_c|| / \sum |F_0|$; ^c wR2 = $[\sum w(F_0^2)^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}$; w = $1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ where P = $(max(F_0^2, 0) + 2Fc^2)/3$, being a = 0.0528 and b = 3.3176

Table S2: Crystallographic data and single-crystal refinement details of $(quinuclidinium)[FeCl_4]$ at 10, 250 and 295 K from the refinement of the neutron single-crystal data.

	Phase III @ 10 K	Phase III @ 250 K	Phase II @ 295 K
Empirical formula	C7H13Cl4FeN1	C7H13Cl4FeN1	C7H13Cl4FeN1
Formula weight	308.84	308.84	308.84
Crystal system	orthorhombic	orthorhombic	orthorhombic
Space group	P b c a	Pbca	$P b c 2_1$
<i>a</i> (Å)	13.0822(5)	13.2030(10)	6.6726(19)
<i>b</i> (Å)	12.5799(6)	12.8939(12)	13.1429(8)
<i>c</i> (Å)	14.6292(5)	14.7769(10)	14.6275(15)
V (Å ³)	2407.57(17)	2515.6(3)	1282.8(4)
Z	8	8	4
ρ (g·cm ⁻³)	1.710	1.636	1.604
wavelength (Å ⁻¹)	0.94558	1.45566	1.45566
Reflections [I>2 σ (I)]	3821	1278	643
Reflections [all data]	3921	1743	957
parameters	245	244	118
Goodness of fit (S) ^a	1.254	1.606	2.485
$R_1^{b/w}R^{2c}$ [I>2 $\sigma(I)$]	0.0961 / 0.2256	0.0770/0.2114	0.2046 / 0.5063
R_1^b/wR^2^c [all data]	0.0975 / 0.2262	0.0996 / 0.2255	0.2464 / 0.5602

^a S = $[\sum w(F_0^2 - F_c^2)^2 / (N_{obs} - N_{param})]^{1/2}$. ^b R₁ = $\sum ||F_0| - |F_c|| / \sum |F_0|$; ^c wR2 = $[\sum w(F_0^2)^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}$; w = $1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ where P = $(max(F_0^2, 0) + 2Fc^2)/3$, being a = 0.0528 and b = 3.3176

Table S3: Relevant distances of (quinuclidinium)[FeCl₄] at 10 K.

Quinuclidinium	Length (Å)	FeCl4	Length (Å)	FeFe	Length (Å)
C7-C4	1.533(4)	Fe1-Cl4	2.189(2)	Fe1…Fe1 ^I	6.350(3)
C7-C8	1.535(3)	Fe1-Cl2	2.198(2)	Fe1…Fe1 ^{II}	6.541(2)
C3-C4	1.536(4)	Fe1-Cl3	2.205(3)	Fe1…Fe1 ^{III}	7.444(2)
C3-C2	1.537(4)	Fe1-Cl1	2.209(2)		
C2-N1	1.505(3)				
C6-N1	1.505(3)				
C6-C5	1.540(4)				
C4-C5	1.531(3)				
C8-N1	1.506(3)				

I: 1/2-*x*, -1/2+*y*, *z*; II: 1/2+*x*, *y*, 1/2-*z*; III: 1/2-*x*, -*y*, 1/2+*z*.

Quinuclidinium	Length (Å)	FeCl4	Length (Å)	FeFe	Length (Å)
C1-C2	1.530(7)	Fe1-Cl3	2.175(3)	Fe1…Fe1 ^{IV}	6.488(4)
C1-C3	1.530(8)	Fe1-Cl1	2.181(3)	Fe1…Fe1 ^{II}	6.602(3)
C1-C5	1.537(6)	Fe1-Cl4	2.187(5)	Fe1…Fe1 ^{VI}	7.420(2)
C2-C6	1.519(7)	Fe1-Cl2	2.192(3)		
C3-C4	1.497(7)				
C4-N1	1.489(6)				
C5-C7	1.499(7)				
C6-N1	1.476(5)				
C7-N1	1.485(5)				
$H_{2} = \frac{1}{2} + \frac{1}{2$					

Table S4: Relevant distances of (quinuclidinium)[FeCl₄] at 250 K.

II: 1/2+*x*, *y*, 1/2-*z*; IV: 1-*x*, 1/2+*y*, 1/2-*z*; VI: 1-*x*, 1-*y*, -*z*.

Table S5: Relevant distances of (quinuclidinium)[FeCl₄] at 295 K.

Quinuclidinium	Length (Å)	FeCl4	Length (Å)	Fe···Fe	Length (Å)
C2A-C6A	2.48(4)	Fe1-Cl4	2.138(19)	Fe1…Fe1 ^{VII}	6.621(13)
C2A-C8A	2.50(4)	Fe1-Cl2	2.172(12)	Fe1…Fe1 ^{VIII}	6.67(10)
C7A-N1A	2.35(4)	Fe1-Cl1	2.207(17)	Fe1…Fe1 ^{IX}	7.417(16)
C7A-C3A	2.48(4)	Fe1-Cl3	2.218(19)		
C7A-C5A	2.49(4)				
C8A-C6A	2.49(4)				
C4A-C6A	2.471(4)				
C4A-N1A	2.48(3)				
C5A-N1A	2.44(4)				
C5A-C3A	2.48(5)				
C3A-N1A	2.40(4)				
C2B-C6B	2.49(4)				
C2B-C8B	2.49(4)				
C7B-N1B	2.44(4)				
C7B-C3B	2.48(4)				
C7B-C5B	2.49(4)				
C8B-C4B	2.48(3)				
C8B-C6B	2.49(4)				
C4B-N1B	2.48(3)				
C4B-C6B	2.48(3)				
C5B-N1B	2.44(4)				
C5B-C3B	2.48(4)				
C3B-N1B	2.32(4)				

VII: -*x*, 1/2+*y*, *z*; VIII: 1+*x*, *y*, *z*; IX: -*x*, -*y*, 1/2+*z*.

Fig. S1. FTIR and Raman (inset) spectra of (quinuclidinium)[FeCl₄].

Fig. S2. DSC-thermogram of (quinuclidinium)[FeCl4]. Heating rate: 10 K/min.

Fig. S3. Rietveld refinement at 300 K (a) and 300 K after increasing the temperature up to 470 K (b). The peaks corresponding to the second phase are not observed in the pattern after the annealing. Observed and calculated patterns are represented by red points and by a solid black line, respectively. Positions of the Bragg reflections are represented by vertical green bars. The observed-calculated difference pattern is depicted as a blue line at the bottom of the figure.

Fig. S4. (Left) D1B data at 10 (red) and 1.4 K (blue). (Right) Evolution of the main magnetic peak as function of temperature.