Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Pyrido[2,3-b]pyrazine based full-color fluoresent materials for high-performance OLEDs

Ling Yu, Zhongbin Wu, Guohua Xie, Jiajia Luo, Yang Zou, Dongge Ma* and Chuluo Yang*

Corresponding Author
*E-mail: clyang@szu.edu.cn (Chuluo Yang)
*E-mail: msdgma@scut.edu.cn (Dongge Ma)

General Information

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Advance III (400 MHz) spectrometer with CDCl_{3} as the solvent. Mass spectra were measured on a $\mathrm{ZAB} 3 \mathrm{~F}-\mathrm{HF}$ mass spectrophotometer. Matrix-assisted laser desorption ionization/time-of-flight (MALDI-TOF) mass spectra were performed on a Bruker BIFLEX III TOF mass spectrometer. Elemental analyses were performed on a Vario EL-III microanalyzer. Thermogravimetric analysis (TGA) was performed on a Netzsch STA 449C instrument. Differential scanning calorimetry (DSC) was performed on a NETZSCH DSC 200 PC unit at a heating rate of $20{ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ from 25 to $300{ }^{\circ} \mathrm{C}$ under argon. The glass transition temperature $\left(\mathrm{T}_{\mathrm{g}}\right)$ was determined from the second heating scan at a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$. UVvis absorption spectra were recorded on a Shimadzu UV-2700 recording spectrophotometer. Photoluminescence (PL) spectra were recorded on a Hitachi F-4600 fluorescence spectrophotometer. Cyclic voltammetry (CV) was carried out in nitrogen-purged dichloromethane (oxidation scan) at room temperature with a CHI voltammetric analyzer. $\mathrm{N}-\mathrm{Bu}_{4} \mathrm{PF}_{6}(0.1 \mathrm{M})$ was used as the supporting electrolyte. The conventional three-electrode configuration consists of a platinum working electrode, a platinum wire auxiliary electrode, and an Ag wire pseudoreference electrode with ferroceniumferrocene $\left(\mathrm{Fc}^{+} / \mathrm{Fc}\right)$ as the internal standard. The PL lifetimes were measured by a single photon counting spectrometer from Edinburgh Instruments (FLS920) with a Picosecond Pulsed UVLASTER (LASTER377) as the excitation source. The photoluminescence quantum efficiency was measured using an absolute photoluminescence quantum yield measurement system (C9920-02, Hamamatsu Photonics).

Devices fabrication and characterization

The device was grown on clean glass substrates pre-coated with a 180 -nm-thick ITO with a sheet resistance of 10Ω per square. The ITO glass substrates were pre-cleaned carefully and treated by oxygen plasma for 2 min . Then the sample was transferred to the deposition system. 10 nm MoO 3 was firstly deposited onto the ITO substrate, consecutively followed by TAPC (50 nm), mCP (10 nm), emissive layer (20 nm), BmPyPB (10 nm) and BmPyPB: $3 \% \mathrm{Li}_{2} \mathrm{CO}_{3}(45 \mathrm{~nm})$. Finally, a cathode composed of lithium carbonate and aluminum was sequentially deposited onto the sample in the vacuum of 10^{-6} Torr. The current-voltage-brightness characteristic was measured by using a Keithley source measurement unit (Keithley 2400 and Keithley 2000) with a calibrated silicon photodiode. The EL spectra were measured by a Spectrascan PR650 spectrophotometer. The EQE was calculated from the luminance, the EL spectrum, and the current density.

Synthesis of materials

2,3-diphenyl-7-(5H-Iminostilbene-yl)-pyrido[2,3-b]pyrazine (SBPQ-BAZ): A mixture of SBPQ $(1.20 \mathrm{~g}, 3.31 \mathrm{mmol}), 5 H$-Iminostilbene ($0.83 \mathrm{~g}, 4.30 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{mg}, 0.09 \mathrm{mmol}), \mathrm{HP}(t-$ $\mathrm{Bu})_{3} \mathrm{BF}_{4}(64 \mathrm{mg}, 0.22 \mathrm{mmol}), t-\mathrm{BuONa}(0.52 \mathrm{~g}, 5.42 \mathrm{mmol})$, and toluene $(30 \mathrm{~mL})$ was refluxed under argon for 24 h . After cooled, the mixture was extracted with brine and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel using dichloromethane/petroleum ether (5:1 by vol.) as the eluent to give a yellow powder (1.20 g , yield: $76 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 8.42(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{t}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 154.72$, $151.66,145.73,144.40,143.85,141.25,139.14,138.52,137.13,135.71,130.82,130.52,130.14$, 129.61, 129.45, 128.84, 128.64, 128.34, 128.15, 128.00, 113.18. MS (EI): $m / z 474$ [M $\left.{ }^{+}\right]$. Elemental analysis (\%) for $\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{~N}_{4}$: C 83.52, H 4.67, N 11.81; Found: C 83.59, H 4.74, N 11.88 .

2,3-diphenyl-7-(3,6-di-tert-butylcarbazole-9H-yl)-pyrido[2,3-b]pyrazine (SBPQ-tBuCz): A mixture of SBPQ (1.20 g, 3.31 mmol), 3,6-di-tert-butyl- 9 H -carbazole ($1.47 \mathrm{~g}, 4.98 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.28 \mathrm{~g}$, $16.5 \mathrm{mmol}), \mathrm{CuI}(0.11 \mathrm{~g}, 0.58 \mathrm{mmol})$ and 18 -crown- $6(0.15 \mathrm{~g}, 0.58 \mathrm{mmol})$ were dissolved in $1,2-$ dichlorobenzene (5 mL) under nitrogen atmosphere. The reaction mixture was stirred for 48 h at 180 ${ }^{\circ} \mathrm{C}$. After cooled, the mixture was extracted with brine and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel using dichloromethane/petroleum ether (3:2 by vol.) as the eluent to give a yellow powder (1.82 g, yield: 98%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: $9.47(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=4.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 8.19(\mathrm{~s}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 6 \mathrm{H})$, $1.49(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]: 156.05,155.56,152.70,148.02,144.49,138.49$, $138.00,136.50,135.96,130.31,129.90,129.56,128.56,128.30,124.28,116.73,108.91,34.89$, 31.99。MS (EI): m/z $560\left[\mathrm{M}^{+}\right]$. Elemental analysis (\%) for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{~N}_{4}$: C 83.54, H 6.47, N 9.99; Found: C 83.67, H 6.48, N 10.14 .

2,3-diphenyl-7-[3,6-(3,6-di-tert-butylcarbazole)-carbazole-9H-yl]-pyrido[2,3-b]pyrazine (SBPQ$\mathbf{D} \boldsymbol{t B u C z})$: it was prepared by the same procedure with $\mathbf{S B P Q}-\boldsymbol{t B u C z}$ excepting using 3,6-bis(3,6-di-tert-butylcarbazol-9-yl)carbazole ($\mathbf{D} t \mathbf{B u C z})(2.39 \mathrm{~g}, 3.31 \mathrm{mmol})$ to replace 3,6 -di-tert-butyl-9 H carbazole. SBPQ-D $\boldsymbol{t} \mathbf{B u C z}$ is a yellow powder (2.5 g , yield: 90%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: $9.62(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 2 \mathrm{H}), 8.17(\mathrm{~s}, 4 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.73-7.64 (m, 6H), 7.49-7.47 (m, 5H), 7.43-7.36 (m, 9H), $1.47(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]: 156.88,156.01,152.63,148.70,142.80,139.97,139.73,138.24,137.85,136.35,134.92$, $132.20,130.37,129.93,128.64,128.40,126.55,124.92,123.72,123.25,119.66,116.34,110.85$, 109.06, 34.80, 32.09. MS (EI): $m / z 1003$ [$\left.{ }^{+}\right]$. Elemental analysis (\%) for $\mathrm{C}_{71} \mathrm{H}_{66} \mathrm{~N}_{6}$: C 84.99, H 6.63, N 8.38; Found: C 84.75, H 6.63, N 8.28.

2,3-diphenyl-7-(9,9-diphenyl-9,10-dihydroacridine-10-yl)-pyrido[2,3-b]pyrazine (SBPQ-DPAC): it was prepared by the same procedure with SBPQ-BAZ excepting using 9,9-diphenyl-9,10dihydroacridine (DPAC) $(1.10 \mathrm{~g}, 3.31 \mathrm{mmol})$ to replace $5 H$-Iminostilbene. SBPQ-DPAC is a yellow powder (1.46 g , yield: 86%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]: 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.27(\mathrm{~m}, 12 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.01-$
$6.98(\mathrm{~m}, 8 \mathrm{H}), 6.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]: 156.72,156.35$, $155.13,148.57,146.67,141.56,138.44,138.32,138.14,137.91,136.39,131.93,130.50,130.38$, 129.82, 129.55, 128.54, 128.28, 127.85, 127.18, 126.65, 121.61, 115.08. MS (EI): m/z $625\left[\mathrm{M}^{+}\right]$. Elemental analysis (\%) for $\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{~N}_{4}$: C 85.97, H 4.92, N 9.11; Found: C 85.90, H 4.93, N 9.15.

2,3-diphenyl-7-(9,9-dimethyl-9,10-dihydroacridine-10-yl)-pyrido[2,3-b]pyrazine (SBPQ-DMAC): it was prepared by the same procedure with SBPQ-BAZ excepting using 9,9-dimethyl-9,10dihydroacridine (DMAC) $(0.90 \mathrm{~g}, 4.30 \mathrm{mmol})$ to replace $5 H$-Iminostilbene. SBPQ-DMAC is an orange powder (1.50 g , yield: $92 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]: 9.11(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H})$, $7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.05-$ $7.01(\mathrm{~m}, 4 \mathrm{H}), 6.44(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: 157.05, $156.54,155.19,148.75,140.35,139.02,138.75,138.29,137.95,136.72,130.30,129.88,128.53$, 128.31, 126.66, 125,54, 121.99, 114.73, 36.27, 30.99, 30.73. MS (EI): $m / z 490\left[\mathrm{M}^{+}\right]$. Elemental analysis (\%) for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{4}$: C 83.24, H 5.34, N 11.42; Found: C 83.45, H 5.40, N 11.40 .

2,3-diphenyl-7-(10H-phenoxazin-10-yl)-pyrido[2,3-b]pyrazine (SBPQ-PXZ): it was prepared by the same procedure with SBPQ-BAZ excepting using $10 H$-phenoxazin (PXZ) ($0.79 \mathrm{~g}, 4.31 \mathrm{mmol}$) to replace 5 H -Iminostilbene. SBPQ-PXZ is a red powder (1.50 g , yield: 97%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 9.14(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-$ $7.35(\mathrm{~m}, 6 \mathrm{H}), 6.82-6.74(\mathrm{~m}, 4 \mathrm{H}), 6.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 156.88,155.28,148.90,144.23,139.81,138.17,137.82,136.61,136.48$, 133.19, 130.29, 129.86, 129.67, 128.55, 128.33, 123.50, 122.74, 116.20, 113.52. MS (EI): m/z 464
$\left[\mathrm{M}^{+}\right]$. Elemental analysis (\%) for $\mathrm{C}_{31} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$: C 80.15, H 4.34, N 12.06; Found: C 80.25, H 4.48, N
12.00 .

Figure S1. (a) Differential scanning calorimetry (DSC) curves and (b) thermal gravity analysis (TGA) curves of the target compounds.

SBPQ-BAZ SBPQ-tBuCz

SBPQ-DtBuCz

SBPQ-DPAC SBPQ-DMAC SBPQ-PXZ

Figure S2. Molecular structures (upper), and the HOMO/LUMO distributions evaluated by using b3lyp/6-31g(d) level.

Figure S3. Cyclic voltammogram of target compounds in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for oxidation scan.

Figure S4. Transient PL characteristics of SBPQ-D $t \mathrm{BuCz}$ and $\operatorname{SBPQ}-\mathrm{PXZ}(\mathrm{a}-\mathrm{b})$ in toluene $\left(10^{-4} \mathrm{M}\right)$ under argon conditions and (c-d) in film at room temperature.

Figure S5. Transient PL decay of CBP:10\% TADF in films after the deoxygenation at room temperature.

Table S1. The lifetimes, quantum efficiencies and rate constants of CBP: 10% TADF in film.

TADF Compounds	$\begin{gathered} \boldsymbol{\tau}_{\mathrm{F}} \\ {[\mathrm{~ns}]} \end{gathered}$	τ_{d} [$\mu \mathrm{s}$]	$\boldsymbol{\Phi}_{\mathbf{P L}}{ }^{[2]} \boldsymbol{\Phi}_{\mathbf{D F}}{ }^{[2]}$		$\begin{aligned} & \boldsymbol{k}_{\mathrm{P}}[\mathrm{~b}] \\ & {\left[\mathrm{s}^{-1}\right]} \end{aligned}$	$\begin{aligned} & \boldsymbol{k}_{\mathrm{d}}^{[\mathrm{b}]} \\ & {\left[\mathrm{s}^{-1}\right]} \end{aligned}$	$\begin{aligned} & \boldsymbol{k}_{\mathbf{r}}^{\mathrm{Scc}]} \\ & {\left[\mathrm{s}^{-1}\right]} \end{aligned}$	$\begin{gathered} \boldsymbol{k}_{\mathrm{ISC}}{ }^{[\mathrm{d}]} \\ {\left[\mathrm{s}^{-1}\right]} \end{gathered}$	$\begin{gathered} \boldsymbol{k}_{\mathrm{RISC}^{[d]}}^{[\mathrm{d}]} \\ {\left[\mathrm{s}^{-1}\right]} \end{gathered}$
			[\%]	[\%]					
SBPQ-DPAC	37	4.8	98	43	2.7×10^{7}	2.1×10^{5}	1.5×10^{7}	1.2×10^{7}	3.7×10^{5}
SBPQ-DMAC	38	4.0	61	24	2.6×10^{7}	2.5×10^{5}	9.6×10^{6}	1.6×10^{7}	2.6×10^{5}

${ }^{[a]}$ The total and delayed fluorescence quantum yield, respectively. ${ }^{[b]}$ The rate constant for prompt and delayed fluorescence, respectively. ${ }^{[c]} k_{\mathrm{r}}{ }^{\mathrm{S}}$ represents the radiative decay rate constant from S_{1} to S_{0} transition. ${ }^{[d]}$ The rate constants for intersystem crossing (ISC) and reverse intersystem crossing (RISC) between the S_{1} and T_{1} states, respectively.

Figure S6. (a) current density-voltage-brightness characteristics, (b-c) EL spectra of the doped devices (A and B) measured at different voltages, respectively.

Table S2. Comparison of the device data for the representative yellow and orange/red TADFOLEDs.

Device	$\begin{aligned} & \mathbf{V}_{\text {on }}{ }^{[a]} \\ & {[V]} \end{aligned}$	$\begin{aligned} & \mathrm{EQE}_{\text {max }} \\ & {[\%]} \end{aligned}$	$\begin{aligned} & \mathrm{CE}_{\max } \\ & {\left[\mathrm{cd} \mathrm{~A}^{-1}\right]} \end{aligned}$	$\begin{aligned} & \mathbf{P E}_{\max } \\ & {\left[\operatorname{lm} \mathbf{W}^{-1}\right]} \end{aligned}$	$\begin{aligned} & \mathbf{L E}_{\text {max }} \\ & {\left[\mathbf{c d} \mathbf{m}^{-2}\right]} \end{aligned}$	$\begin{aligned} & \text { Peak }^{[b]} \\ & {[\mathrm{nm}]} \end{aligned}$	Reference
Spiro-CN	~ 3.0	4.4	13.5	13.0	12000	~ 545	Chem. Commun. 2012, 48, 9580. ${ }^{[51]}$
TXO-TPA	5.3	18.5	43.3	47.4	16300	552	Adv. Mater. 2014, 26, 5198. ${ }^{\text {[S2] }}$
PxPmBPX	3.2	11.3	35.3	N.A.	61040	541	Dalton Trans. 2015, 44, 8356. ${ }^{\text {[33] }}$
TPA-PRZ(CN) 2	N.A.	4.0	N.A.	N.A.	N.A.	542	J.Am.Chem.Soc. 2015, 137, 11908. ${ }^{\text {[54] }}$
Bis-PXZTRZ	N.A.	9.1	N.A.	N.A.	N.A.	~ 552	Chem. Mater. 2013, 25, 3766. ${ }^{[55]}$
PXZDSO_{2}	3.7	16.7	49.3	38.5	17000	560	Adv. Mater. 2016, 28, 181. ${ }^{[56]}$
Py56	~ 2.5	29.2	96.3	105.5	N.A.	~ 550	Adv. Funct. Mater. 2016, 26, 7560. ${ }^{[87]}$
DBT-BZ-PXZ	2.9	9.2	26.6	27.9	N.A.	557	Chem. Mater. 2017, 29, 3623.[58]
DBT-BZ-PTZ	2.7	9.7	26.5	29.1	N.A.	563	
Ac-CNP	4.7	13.3	38.1	26.1	70630	580	Adv.Funct.Mater. 2016, 26, 1813. ${ }^{[59]}$
HAP-3TPA	4.4	17.5	25.9	22.1	17000	~ 600	Adv. Mater. 2013, 25, 3319. ${ }^{\text {[1 }} 0$]
Ac-CNBQx	2.8	14.0	34.0	33.3	N.A.	585	Adv. Optical Mater. 2018, 6, 1701147. ${ }^{\text {[S11] }}$
3	N.A.	17.5	55.7	58.4	N.A.	544	Angew. Chem. Int. Ed. 2019, 58, 9088. ${ }^{[12]}$
SBPQ-DPAC	3.2	20.0	65.7	59.0	41350	556	This work
SBPQ-DMAC	3.2	15.4	41.5	40.7	32505	572	This work

${ }^{[a]}$ At a luminance of $1 \mathrm{~cd} \mathrm{~m}^{-2} ;{ }^{[b]}$ The peak wavelength of EL spectrum. N.A.: not available.

References

[S1] T. Nakagawa, S. Y. Ku, K. T. Wong and C. Adachi, Chem. Commun., 2012, 48, 9580-9582.
[S2] H. Wang, L. Xie, Q. Peng, L. Meng, Y. Wang, Y. Yi and P. Wang, Adv. Mater., 2014, 26, 5198-5204.
[S3] S. Y. Lee, T. Yasuda, I. S. Park and C. Adachi, Dalton Trans., 2015, 44, 8356-8359.
[S4] K. Kawasumi, T. Wu, T. Zhu, H. S. Chae, T. Van Voorhis, M. A. Baldo and T. M. Swager, J. Am. Chem. Soc., 2015, 137, 11908-11911.
[S5] H. Tanaka, K. Shizu, H. Nakanotani and C. Adachi, Chem. Mater., 2013, 25, 3766-3771.
[S6] G. Xie, X. Li, D. Chen, Z. Wang, X. Cai, D. Chen, Y. Li, K. Liu, Y. Cao and S. J. Su, $A d v$. Mater., 2016, 28, 181-187.
[S7] K.-C. Pan, S.-W. Li, Y.-Y. Ho, Y.-J. Shiu, W.-L. Tsai, M. Jiao, W.-K. Lee, C.-C. Wu, C.-L. Chung, T. Chatterjee, Y.-S. Li, K.-T. Wong, H.-C. Hu, C.-C. Chen and M.-T. Lee, Adv. Funct. Mater., 2016, 26, 7560-7571.
[S8] J. Guo, X.-L. Li, H. Nie, W. Luo, R. Hu, A. Qin, Z. Zhao, S.-J. Su and B. Z. Tang, Chem. Mater., 2017, 29, 3623-3631.
[S9] I. S. Park, S. Y. Lee, C. Adachi and T. Yasuda, Adv. Funct. Mater., 2016, 26, 1813-1821.
[S10] J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura, H. Miyazaki and C.Adachi, Adv. Mater., 2013, 25, 3319-3323.
[S11] R. Furue, K. Matsuo, Y. Ashikari, H. Ooka, N. Amanokura and T. Yasuda, Adv. Optical Mater., 2018, 6, 1701147.
[S12] P. Li, H. Chan, S. L. Lai, M. Ng, M. Y. Chan and V. W. Yam, Angew. Chem. Int. Ed., 2019, 58, 9088-9094.

