Supporting Information

## High-Efficiency and UV-Stable Flexible Perovskite Solar Cells Enabled by an Alkaloid-Doped C<sub>60</sub> Electron Transport Layers

Xiaolong He<sup>†</sup>, Cheng Liu<sup>†</sup>, Yi Yang, Yong Ding<sup>\*</sup>, Shuang Ma, Yunzhao Wu, Ye Tao, Xuepeng Liu, Molang Cai and Songyuan Dai<sup>\*</sup>

(†These authors contributed equally to this work.)

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, P. R. China E-mail: dingy@ncepu.edu.cn; sydai@ncepu.edu.cn

## **Experimental Section**

*Device Fabrication:* Fullerene ( $C_{60}$ ) films were deposited on the clean fluorine-doped tin oxide (FTO) or flexible indium-doped tin oxide (ITO)/polyethylene terephthalate (PET) substrates by spincoating a nearly saturated solution of 28 mM C<sub>60</sub> (Alfa, 99.5%) dissolved in 1,2-dichlorobenzene with a speed of 2000 rpm for 30 s and annealed at 60°C for 5 min. 0.1 mM 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, Alfa, 99%) was added in the  $C_{60}/1,2$ -dichlorobenzene solution to fabricate the DBU doped  $C_{60}$ (DBU-C<sub>60</sub>) films. To compare the stability between the C<sub>60</sub>- and TiO<sub>2</sub>-based devices, the reference TiO<sub>2</sub>based devices were fabricated using a compact TiO<sub>2</sub> (c-TiO<sub>2</sub>) ETLs by spray method at 500°C as previous reported.<sup>1</sup> FA<sub>0.85</sub>MA<sub>0.15</sub>PbI<sub>2.55</sub>Br<sub>0.45</sub> precursor solution was prepared of 1.35 M Pb<sup>2+</sup> (PbI<sub>2</sub> and PbBr<sub>2</sub>) in a mixed solvent of DMSO and DMF (v/v=1:4). Both of the molar ratios for PbI<sub>2</sub> (TCI, 99.99%)/PbBr<sub>2</sub> (TCI, 99.99%) and FAI (TCI, 98%)/MABr (TCI, 98%) were fixed at 0.85:0.15. The completely dissolved solution was spin coated onto ETLs in the nitrogen glovebox with the following procedure: first 1000 rpm for 10 s and second 5000 rpm for 30 s with ramps of 1000 and 2500 rpm s<sup>-1</sup>, respectively, 110 µL of chlorobenzene was rapidly dripped on the rotating substrates during the second spin-coating step 15 s before the end of the procedure. The transparent perovskite film was then heated at 100 °C for 1.5 hours. A spiro-OMeTAD (PLT, 98%)/ chlorobenzene solution (60 mM) with additives of 28 µL 4-tertbutylpyridine (TBP, Aldrich, 96%) and 17.5 µL Li-TFSI (Alfa, 98%)/acetonitrile (1.8 M) and 8µL FK209-cobalt(III)-TFSI (PLT, 98%)/acetonitrile (0.2 M) was spin coated on top of the active layer at 4000 rpm for 30 s. Finally, 80-nm-thick Au was deposited by thermal evaporation under high vacuum.

*Device characterization:* The *J-V* characteristics of the devices were measured with a Keithley 2400 sourcemeter equipped with a sunlight simulator (XES-300T1, SAN-EI Electric, AM 1.5), which was calibrated using a standard silicon reference cell. The J-V curves of all devices were measured by masking the active area with a metal mask of 0.09 cm<sup>2</sup> under a simulated AM 1.5G spectrum. EQE was characterized by an Enli Technology EQE measurement system with a dual xenon/quartz halogen light source. The absorption spectra were recorded using UV/Vis spectrometer (Shimadzu, UV-3600) in the 300-900 nm range. PL and TRPL were recorded with a laser confocal Raman spectrometer (Princeton Instruments, Acton Standard Series SP-2558) and a 485 nm laser (PicoQuant LDH-P-C-485, 0.4 mW

with a 1% optical density filter) using a home-built confocal microscope. XRD spectra were performed with a Rigaku SmartLab SE X-ray diffractometer.

| DBU concentration | $J_{ m sc}$            | V <sub>oc</sub> | FF    | PCE   |
|-------------------|------------------------|-----------------|-------|-------|
|                   | (mA·cm <sup>-2</sup> ) | (V)             | (%)   | (%)   |
| 0.000 mM          | 23.34                  | 1.00            | 75.13 | 17.54 |
| 0.025 mM          | 23.29                  | 1.02            | 75.76 | 18.00 |
| 0.050 mM          | 23.51                  | 1.05            | 75.43 | 18.62 |
| 0.075 mM          | 23.42                  | 1.08            | 76.37 | 19.32 |
| 0.100 mM          | 23.49                  | 1.10            | 76.62 | 19.80 |
| 0.125 mM          | 23.53                  | 1.10            | 75.13 | 19.45 |
| 0.150 mM          | 23.28                  | 1.09            | 73.46 | 18.64 |

Table S1 Photovoltaic parameters of PSCs fabricated with  $C_{60}$  ETLs with different concentration of DBU dopant measured under AM1.5 illumination.



Fig. S1 Cross-section SEM of the  $C_{60}$  films. Scale bar, 200 nm.



Fig. S2 XRD pattern of the  $C_{60}$  films.



Fig. S3 Atomic force microscopy (AFM) images of the  $C_{60}$  and DBU- $C_{60}$  films on the FTO substrates.



Fig. S4 Perovskite precursor contact angles of (c)  $C_{60}$  and (d) DBU- $C_{60}$  substrates.



Fig. S5 External quantum efficiency (EQE) spectrum of the DBU- $C_{60}$ -based PSC and the integrated short-circuit current density.



Fig. S6 Device performance distribution for 30 devices with  $DBU-C_{60}$  ETLs, the curve represents the Gaussian function of the histogram.



Fig. S7 The calculated electron lifetimes of the planner PSCs with  $C_{60}$  and DBU- $C_{60}$  ETLs.

[1] Y. Yang, H. Peng, C. Liu, Z. Arain, Y. Ding, S. Ma, X. Liu, T. Hayat, A. Alsaedi, S. Dai, J. Mater. Chem. A 2019, 7, 6450.