Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI)

Large Magnetocaloric Effect in Gadolinium Borotungstate Gd₃BWO₉

Ziyu Yang,^a Huihui Zhang,^a Mingjun Bai,^b Wei Li,^c Shaolong Huang,^a Shuangchen Ruan^a and Yu-Jia Zeng^{*a}

1 Experimental Section

Structural Analysis. High-resolution powder X-ray diffraction patterns for quantitative analysis were collected on a PANalytical X'Pert3 Powder X-ray diffractometer equipped with Cu-*Ka* radiation at 40 kV and 40 mA. Long scans with an angular range $10^{\circ} \le 2\theta \le 70^{\circ}$ (step scanning mode, 0.13° steps in a measuring time of 0.8 s per step) were measured. The refinement with Rietveld analysis was performed using the GSAS package with *EXPGUI* interface.^[1-3] The first kind Chebyshev polynomial and pseudo-Voigt function were used for fitting backgrounds and modeling peak shape.

Physical Measurements. Magnetic susceptibility data were collected in the Physical Property Measurement System (PPMS®DynaCoolTM, Quantum Design) with an applied field of 10 mT in the 2-300 K temperature range. Isothermal magnetization curves were collected in the field range $0 \le \mu_0 H \le 7$ T and temperature range of 2-11 K with a step of 1 K after cooling in zero fields.

Heat capacity measurements were conducted using the relaxation method on powder samples in a commercial setup Physical Property Measurement System (PPMS-9, Quantum Design) with Helium-3 refrigerator option, under a temperature range of 300 mK-30 K and constant external fields of 0, 1, 3 and 9 T, respectively.

^a College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China.

^b School of Materials Science and Engineering, Central South University, 410083, Changsha, China.

^c Beijing Key Laboratory for Magnetoelectric Materials and Device (BKLMMD), Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China.

Correspondence: yjzeng@szu.edu.cn

2 Supplementary Figures

Fig. S1 Isothermal magnetization curves recorded at a field range of $0 \le \mu_0 H \le 7 T$ and temperature range of 2-11 K with a step of 1 K after cooling in zero field.

Fig. S2 Collinear spin configurations containing 6 Gd ions with differing nearestneighbor FM and AFM spin alignments. See text for type-II.

Fig. S3 Spin polarized partial density of states of Gd₃BWO₉. The dashed line is Fermi energy.

Fig. S4 Magnetic entropy change $-\Delta S_M$ as a function of temperature under applied field $\mu_0 H$ ranging from 50 Oe to 7 T.

Fig. S5 Field dependence of maximum magnetic entropy change $-\Delta S_{M, max}$ and scaling law governing the field variance of the reference temperature T_{r} . See text for details.

Vector	Length	Optr Cell	Neighbor atom coordinates
Gd1_Gd1	3.8815(15)	2 0 0-1	0.27581 0.35813 -0.28804
Gd1_Gd1	3.8815(15)	2000	0.27581 0.35813 0.71196
Gd1_Gd1	3.8815(15)	6 0 0-1	0.08232 -0.27581 -0.28804
Gd1_Gd1	3.8815(15)	6000	0.08232 -0.27581 0.71196
Gd1_W1	3.4666(15)	1 0-1 0	0.33333 -0.33333 0.24008
Gd1_W1	3.528(4)	2 1 0-1	0.66666 0.33333 -0.25992
Gd1_B1	2.841(8)	2 0 0-1	0.00000 0.00000 0.31434
Gd1_01	2.640(23)	100-1	0.16683 0.06543 -0.18027
Gd1_01	2.703(20)	2 0 0-1	0.10141 0.16683 0.31973
Gd1_01	2.273(20)	6 0 0-1	0.06543 -0.10141 0.31973
Gd1_02	2.31(4)	5000	0.24478 -0.20356 0.04939
Gd1_02	2.188(28)	6000	0.44834 0.24478 0.54939
Gd1_03	2.447(20)	2 1 0-1	0.63265 0.15489 -0.01620
Gd1_03	2.542(20)	5000	0.36735 -0.15489 0.48380
Gd1_03	2.457(13)	6 0 0-1	0.52223 0.36735 -0.01620
W1_Gd1	3.4666(15)	1010	0.35813 1.08232 0.21196
W1_Gd1	3.528(4)	2000	0.27581 0.35813 0.71196
W1_Gd1	3.4667(15)	3000	-0.08232 0.27581 0.21196
W1_Gd1	3.528(4)	4110	0.64187 0.91768 0.71196
W1_Gd1	3.4667(15)	5110	0.72419 0.64187 0.21196
W1_Gd1	3.528(4)	6010	0.08232 0.72419 0.71196
W1_02	1.929(33)	1000	0.20356 0.44834 0.04939
W1_02	1.929(33)	3110	0.55166 0.75522 0.04939
W1_02	1.929(33)	5010	0.24478 0.79644 0.04939
W1_03	1.928(22)	1000	0.15489 0.52223 0.48380
W1_03	1.928(22)	3110	0.47777 0.63265 0.48380

Table S1 Selected bond length values of Gd₃BWO₉.

W1_03	1.928(22)	5010	0.36735 0.84511 0.48380
B1_Gd1	2.841(8)	2000	0.27581 0.35813 0.71196
B1_Gd1	2.841(8)	4000	-0.35813 -0.08232 0.71196
B1_Gd1	2.841(8)	6000	0.08232 -0.27581 0.71196
B1_01	1.249(14)	1000	0.16683 0.06543 0.81973
B1_01	1.249(14)	3000	-0.06543 0.10141 0.81973
B1_01	1.249(14)	5000	-0.10141 -0.16683 0.81973
B1_Gd1	2.841(8)	2000	0.27581 0.35813 0.71196
B1_Gd1	2.841(8)	4000	-0.35813 -0.08232 0.71196
B1_Gd1	2.841(8)	6000	0.08232 -0.27581 0.71196
B1_01	1.249(14)	1000	0.16683 0.06543 0.81973
B1_01	1.249(14)	3000	-0.06543 0.10141 0.81973
B1_01	1.249(14)	5000	-0.10141 -0.16683 0.81973
O1_Gd1	2.640(23)	1001	0.35813 0.08232 1.21196
O1_Gd1	2.273(20)	2000	0.27581 0.35813 0.71196
O1_Gd1	2.703(20)	6000	0.08232 -0.27581 0.71196
O1_B1	1.249(14)	1000	0.00000 0.00000 0.81434
01_01	2.163(23)	3000	-0.06543 0.10141 0.81973
01_01	2.163(23)	5000	-0.10141 -0.16683 0.81973
O2_Gd1	2.188(28)	200-1	0.27581 0.35813 -0.28804
O2_Gd1	2.31(4)	3000	-0.08232 0.27581 0.21196
O2_W1	1.929(33)	1000	0.33333 0.66667 0.24008
O3_Gd1	2.457(13)	2000	0.27581 0.35813 0.71196
O3_Gd1	2.542(20)	3000	-0.08232 0.27581 0.21196
O3_Gd1	2.447(20)	6010	0.08232 0.72419 0.71196
O3_W1	1.928(22)	1000	0.33333 0.66667 0.24008

Table S2 Selected bond angles of Gd₃BWO₉.

Angle	Degrees	atom 1 loc	atom 3 loc
01_Gd1_01	74.2(6)	100-1	6 0 0-1

01_Gd1_02	73.5(9)	100-1	5000
01_Gd1_02	135.8(13)	100-1	6000
01_Gd1_03	95.8(5)	100-1	2 1 0-1
01_Gd1_03	133.4(5)	100-1	5000
01_Gd1_03	71.5(6)	100-1	6 0 0-1
01_Gd1_02	68.2(9)	6 0 0-1	5000
01_Gd1_02	98.3(8)	6 0 0-1	6000
01_Gd1_03	153.4(6)	6 0 0-1	2 1 0-1
01_Gd1_03	76.3(7)	6 0 0-1	5000
01_Gd1_03	134.7(8)	6 0 0-1	6 0 0-1
O2_Gd1_O2	145.0(18)	5000	6000
O2_Gd1_O3	85.4(8)	5000	2 1 0-1
O2_Gd1_O3	62.3(7)	5000	5000
O2_Gd1_O3	126.3(13)	5000	6 0 0-1
O2_Gd1_O3	105.6(9)	6000	2 1 0-1
O2_Gd1_O3	83.4(15)	6000	5000
O2_Gd1_O3	86.6(9)	6000	6 0 0-1
O3_Gd1_O3	94.8(5)	2 1 0-1	5000
O3_Gd1_O3	59.6(11)	2 1 0-1	6 0 0-1
O3_Gd1_O3	148.7(6)	5000	6 0 0-1
02_W1_02	94.1(12)	1000	3110
02_W1_02	94.1(12)	1000	5010
02_W1_03	81.6(10)	1000	1000
02_W1_03	108.7(13)	1000	3110
02_W1_03	157.0(13)	1000	5010
02_W1_02	94.1(12)	3110	5010
02_W1_03	157.0(13)	3110	1000
02_W1_03	81.6(10)	3110	3110
02_W1_03	108.7(13)	3110	5010
02_W1_03	108.7(13)	5010	1000

02_W1_03	157.0(13)	5010	3110
02_W1_03	81.6(10)	5010	5010
O3_W1_O3	78.4(8)	1000	3110
O3_W1_O3	78.4(8)	1000	5010
O3_W1_O3	78.4(8)	3110	5010
O1_B1_O1	119.95(19)	1000	3000
O1_B1_O1	119.95(19)	1000	5000
O1_B1_O1	119.95(19)	3000	5000
Gd1_O1_Gd1	104.1(8)	1001	2000
Gd1_O1_B1	125.8(23)	1001	1000
Gd1_O1_B1	103.7(12)	2000	1000
Gd1_O2_Gd1	119.2(16)	200-1	3000
Gd1_O2_W1	131.3(19)	2 0 0-1	1000
Gd1_O2_W1	109.3(13)	3000	1000
Gd1_O3_Gd1	101.8(7)	2000	3000
Gd1_O3_Gd1	118.8(7)	2000	6010
Gd1_O3_W1	106.5(9)	2000	1000
Gd1_O3_Gd1	119.9(8)	3000	6010
Gd1_O3_W1	100.8(7)	3000	1000
Gd1_O3_W1	106.9(8)	6010	1000

Table S3 State of the art performances of solid-state cryogenic refrigeration (CR) materials reported in the literature.

Formula	<i>ДS_м</i> Ј·К ⁻¹ ·Кg ⁻¹	<i>ДS_M</i> mJ·K ⁻¹ ·cc ⁻¹	<i>Т</i> К	ΔH T	Ref
Gd(OH)CO ₃	66.4	355	1.8	7	[4]
Gd(HCOO) ₃	55.9	215.7	1.8	7	[5]
${[Gd_6O(OH)_8(CIO_4)_4(H_2O)_6](OH)_4}_n$	46.6	215.6	2.5	7	[6]
$[Gd_4(SO_4)_4(\mu_3-OH)_4(H_2O)]_n$	51.3	198.9	2	7	[7]

[Gd(HCOO)(bdc)],	47	125	2.3	9	[8]
$[Gd_{48}O_6(OH)_{84}(CAA)_{36}(NO_3)_6(H_2O)_{24}(EtOH)_{12}(NO_3)Cl_2]Cl_3\\ \cdot 6DMF\cdot 5EtOH\cdot 20H_2O$	43.6	120.7	1.8	7	[9]
[Gd(C ₄ O ₄)(OH)(H ₂ O) ₄] _n	47.3	112.7	3	9	[10]
$[Mn^{II}(glc)_2(H_2O)_2]$	60.3	112	1.8	7	[11]
[Gd(HCOO)(OAc) ² (H ² O) ²] ⁿ	45.9	110	1.8	7	[12]
[Gd(OAc) ₃ (H ₂ O) _{0.5}] _n	47.7	106.3	1.8	7	[13]
{[Gd ₂ (IDA) ₃]·2H ₂ O} _n	40.6	100.7	2	7	[14]
$[Gd_{36}O_6(OH)_{49}(NA)_{36}(NO_3)_6(N_3)_3(H_2O)_{20}]_{\prime\prime}Cl_{2\prime\prime}\div 28\prime\primeH_2O$	39.66	91.3	2.5	7	[15]
Gd(OH) ₃	62	346.08	2	7	[16]
Gd ₂ Cu(SO ₄) ₂ (OH) ₄	45.52	212.8	4	8	[17]
Gd(OH)SO ₄	53.5	276	2	7	[18]
[Gd ₃ (OH) ₈ Cl] _n	61.8	318.9	3	7	[19]
GdF ₃	71	506	3	7	[20]
GdPO ₄	62	375.8	2.1	7	[21]
GdAlO ₃	40.9	317	2	9	[22]
GdVO ₄	41.1	227	3	5	[23]
K ₂ Gd(BH ₄) ₅	54.6	59.8	5	9	[24]
K3Li3Gd7(BO3)9	56.6	277.2	2	7	[25]
GdBO ₃	57.8	366.3	2	9	[26]
$Gd_5BSi_2O_{13}$	67	461	3	7	[27]
GdCrTiO ₅	36		5	7	[28]
EuTiO ₃	49	331	5	7	[29]
EuSe	37.5	244.8	4.6	5	[30]
Gd ₂ NiMnO ₆	35.5	268	4	7	[31]
GdCrO ₃	41.24	303	3.8	9	[32]

EuHo ₂ O ₄	30	267	2	8	[33]
EuDy ₂ O ₄	25	224	2	8	[33]
GdFeTeO ₆	38.5		5	7	[34]
GdFeO ₃	44	321	3	7	[35]

References

 H. Rietveld, J. Appl. Crystallogr., 1969, 2, 65-71.

[2] B. Toby, *J. Appl. Crystallogr.*, 2001, **34**, 210-213.

[3] A. C. Larson and R. B. Von Dreele, *Report LAUR*, 1994, 86-748.

[4] Y.-C. Chen, L. Qin, Z.-S. Meng, D.-F.
 Yang, C. Wu, Z. Fu, Y.-Z. Zheng, J.-L. Liu,
 R. Tarasenko, M. Orendáč, J. Prokleška,
 V. Sechovský and M.-L. Tong, *J. Mater. Chem. A*, 2014, **2**, 9851-9858.

[5] G. Lorusso, J. W. Sharples, E. Palacios, O. Roubeau, E. K. Brechin, R. Sessoli, A. Rossin, F. Tuna, E. J. L. McInnes, D. Collison and M. Evangelisti, *Adv. Mater.*, 2013, **25**, 4653-4656.

[6] Y.-L. Hou, G. Xiong, P.-F. Shi, R.-R. Cheng, J.-Z. Cui and B. Zhao, *Chem. Commun.*, 2013, **49**, 6066-6068.

[7] S.-D. Han, X.-H. Miao, S.-J. Liu and X.-H. Bu, *Inorg. Chem. Front.*, 2014, 1, 549-552.

[8] R. Sibille, T. Mazet, B. Malaman and M. François, *Chem. - Eur. J.*, 2012, **18**, 12970-12973.

[9] F.-S. Guo, Y.-C. Chen, L.-L. Mao, W.-Q. Lin, J.-D. Leng, R. Tarasenko, M. Orendáč, J. Prokleška, V. Sechovský and M.-L. Tong, *Chem. - Eur. J.*, 2013, **19**, 14876-14885.

[10] S. Biswas, A. Adhikary, S. Goswami and S. Konar, *Dalton Trans.*, 2013, **42**, 13331-13334.

[11] Y.-C. Chen, F.-S. Guo, J.-L. Liu, J.-D.

Leng, P. Vrábel, M. Orendáč, J. Prokleška, V. Sechovský and M.-L. Tong, *Chem. - Eur. J.*, 2014, **20**, 3029-3035.

[12] G. Lorusso, M. A. Palacios, G. S. Nichol, E. K. Brechin, O. Roubeau and M. Evangelisti, *Chem. Commun.*, 2012, **48**, 7592-7594.

[13] F.-S. Guo, J.-D. Leng, J.-L. Liu, Z.-S. Meng and M.-L. Tong, *Inorg. Chem.*, 2012, **51**, 405-413.

[14] J.-M. Jia, S.-J. Liu, Y. Cui, S.-D. Han, T.-L. Hu and X.-H. Bu, *Cryst. Growth Des.*, 2013, **13**, 4631-4634.

[15] M. Wu, F. Jiang, X. Kong, D. Yuan,
 L. Long, S. A. Al-Thabaiti and M. Hong,
 Chem. Sci., 2013, 4, 3104-3109.

[16] Y. Yang, Q.-C. Zhang, Y.-Y. Pan, L.-S. Long and L.-S. Zheng, *Chem. Commun.*, 2015, **51**, 7317-7320.

[17] Y. Tang, W. Guo, S. Zhang, M. Yang,
H. Xiang and Z. He, *Dalton Trans.*, 2015,
44, 17026-17029.

[18] Y. Han, S.-D. Han, J. Pan, Y.-J. Ma and G.-M. Wang, *Mater. Chem. Front.*, 2018, 2, 2327-2332.

[19] Y. Wang, L. Qin, G.-J. Zhou, X. Ye, J. He and Y.-Z. Zheng, *J. Mater. Chem. C*, 2016, 4, 6473-6477.

[20] Y.-C. Chen, J. Prokleška, W.-J. Xu,
 J.-L. Liu, J. Liu, W.-X. Zhang, J.-H. Jia, V.
 Sechovský and M.-L. Tong, *J. Mater. Chem. C*, 2015, **3**, 12206-12211.

[21] E. Palacios, J. A. Rodríguez-Velamazán, M. Evangelisti, G. J. McIntyre, G. Lorusso, D. Visser, L. J. de Jongh and L. A. Boatner, *Phys. Rev. B*, 2014, **90**, 214423-214423.

[22] S. Mahana, U. Manju and D. Topwal, J. Phys. D: Appl. Phys., 2016, 50, 035002.

[23] K. Dey, A. Indra, S. Majumdar and S. Giri, *J. Mater. Chem. C*, 2017, **5**, 1646-1650.

[24] P. Schouwink, E. Didelot, Y.-S. Lee, T. Mazet and R. Černý, *J. Alloys Compd.*, 2016, **664**, 378-384.

[25] M. Xia, S. Shen, J. Lu, Y. Sun and R. Li, *Chem. - Eur. J.*, 2018, **24**, 3147-3150.

[26] P. Mukherjee, Y. Wu, G. I. Lampronti and S. E. Dutton, *Mater. Res. Bull.*, 2018, 98, 173-179.

[27] C. Tao and R. Li, *Chem. - Asian J.*, 2018, **13**, 2834-2837.

[28] M. Das, S. Roy, N. Khan and P. Mandal, *Phys. Rev. B*, 2018, **98**, 104420-104420.

[29] A. Midya, P. Mandal, K. Rubi, R. Chen, J.-S. Wang, R. Mahendiran, G. Lorusso and M. Evangelisti, *Phys. Rev. B*, 2016, **93**, 094422-094422.

[30] D. X. Li, T. Yamamura, S. Nimori, Y. Homma, F. Honda and D. Aoki, *Appl. Phys. Lett.*, 2013, **102**, 152409-152409.

[31] J. K. Murthy, K. D. Chandrasekhar, S. Mahana, D. Topwal and A. Venimadhav, *J. Phys. D: Appl. Phys.*, 2015, **48**, 355001.

[32] S. Mahana, U. Manju and D. Topwal, *J. Phys. D: Appl. Phys.*, 2018, **51**, 305002.

[33] A. Midya, N. Khan, D. Bhoi and P. Mandal, *Appl. Phys. Lett.*, 2012, **101**, 132415-132415.

[34] D. D. Lei, Z. W. Ouyang, X. Y. Yue, L. Yin, Z. X. Wang, J. F. Wang, Z. C. Xia and G. H. Rao, *J. Appl. Phys.*, 2018, **124**, 233904-233904.

[35] M. Das, S. Roy and P. Mandal, *Phys. Rev. B*, 2017, **96**, 174405.