SUPPLEMENTARY INFORMATION

High-resolution organic field-effect transistors manufactured by

electrohydrodynamic inkjet printing of doped electrodes

Jing Zhang,^a Bowen Geng,^b Shuming Duan,^a Congcong Huang,^a Yue Xi,^a Qi Mu,^a

Huipeng Chen,^c Xiaochen Ren,*^a and Wenping Hu*^a

^aTianjin Key Laboratory of Molecular Optoelectronic Sciences. Department of

Chemistry, School of Science, Tianjin University & Collaborative Innovation Center

of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.

^bSchool of Microelectronics, Tianjin University, Tianjin, 300072, China.

^cInstitute of Optoelectronic Display, National & Local United Engineering Lab of Flat

Panel Display Technology, Fuzhou University, Fuzhou 350002, China.

*Corresponding author: Email: renxiaochen@tju.edu.cn; huwp@tju.edu.cn

SUPPLEMENTARY FIGURES

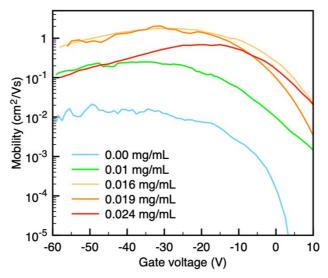
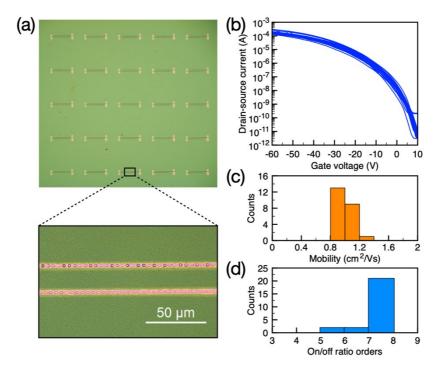



Fig. S1. Field-effect mobility of the OFET as a function of gate voltage.

Fig. S2. (a) Optical microscopy image of the printed DNTT 5×5 array, inset is zoomedin image of printed electrodes, the channel width and length of printed OFETs is 300 and 15 µm, respectively. (b) 25 transfer I-V curves of the 5 × 5 devices array. (c) A histogram of the saturation mobility of 25 OFETs. (b) A histogram of the on/off current ratio of 25 OFETs.