Electronic Supplementary Information for

Broad-band lead halide perovskite quantum dot single-mode lasers

Chun Zhoua,b*, Jie Yua,b*, Hongxing Donga*, Fanglong Yuanc, Xiaopeng Zhenga, Mingming Jiange, Long Zhanga*

aKey Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China. bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. cDepartment of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada. dDivision of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. eCollege of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China. C. Zhou and J. Yu contributed equally to this work.

*Correspondence and requests for materials should be addressed to H. D. (email: hongxingd@siom.ac.cn) or to L. Z. (email: lzhang@siom.ac.cn).
Fig. S1. Structure characterization of CsPb(Br_{0.5}I_{0.5})_3 CQDs/ZnO composite microcavity. a,b SEM images of pure ZnO microrods and CsPb(Br_{0.5}I_{0.5})_3 CQDs/ZnO composite microcavity. c-h, EDS element mapping for CsPb(Br_{0.5}I_{0.5})_3 CQDs/ZnO composite microcavity, showing that CQDs are on the microcavity.
Fig. S2. PL spectra of pure ZnO, pure CsPb(Br$_{0.5}$I$_{0.5}$)$_3$ CQDs and their composite. The PL peak of CsPb(Br$_{0.5}$I$_{0.5}$)$_3$ CQDs is slightly blue shifted.
Fig. S3. SEM image of ZnO particles. These particles have regular shape which guarantee the application of microcavity. Inset: magnified image of an individual ZnO particles.
Fig. S4. Lasing in a CsPb(\(\text{Br}_{0.5}\text{I}_{0.5}\))\(_3\) CQDs/ZnO particle composite microcavity. a, PL spectra of pure ZnO particle, pure CsPb(\(\text{Br}_{0.5}\text{I}_{0.5}\))\(_3\) CQDs and their composite. b, Power dependent lasing from a single CsPb(\(\text{Br}_{0.5}\text{I}_{0.5}\))\(_3\) CQDs/ZnO particle composite microcavity. c, Integrated emission Intensity as a function of pump density showing lasing threshold at 0.1 µJ.cm\(^{-2}\). d, Lorentz fitting of a lasing oscillation mode. The corresponding FWHM is \(~0.17\) nm, and the \(Q\) factor is \(~3700\).
Fig. S5. Excitation power-dependent lasing from a single CsPb(Br_{0.5}I_{0.5})_3 CQDs/ZnO composite microcavity with CQDs of 5mg/ml (a) and 15mg/ml concentration (b).
Fig. S6. The resonant optical modes of ZnO microrods/CsPb(Br$_{0.5}$I$_{0.5}$)$_3$ CQDs with different ZnO sizes.