Electronic Supplementary Information for

Broad-band lead halide perovskite quantum dot single-mode lasers

Chun Zhou^{a,b[†]}, Jie Yu^{a,b[†]}, Hongxing Dong^a*, Fanglong Yuan^c, Xiaopeng Zheng^d, Mingming Jiang^e, Long Zhang^a*

^aKey Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China. ^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. ^cDepartment of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada. ^dDivision of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. ^eCollege of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China. C. Zhou and J. Yu contributed equally to this work.

*Correspondence and requests for materials should be addressed to H. D. (email: hongxingd@siom.ac.cn) or to L.Z. (email: lzhang@siom.ac.cn).

Fig. S1. Structure characterization of CsPb($Br_{0.5}I_{0.5}$)₃ CQDs/ZnO composite microcavity. a,b SEM images of pure ZnO microrods and CsPb($Br_{0.5}I_{0.5}$)₃ CQDs/ZnO composite microcavity. c-h, EDS element mapping for CsPb($Br_{0.5}I_{0.5}$)₃ CQDs/ZnO composite microcavity, showing that CQDs are on the microcavity.

Fig. S2. PL spectra of pure ZnO, pure $CsPb(Br_{0.5}I_{0.5})_3$ CQDs and their composite. The PL peak of $CsPb(Br_{0.5}I_{0.5})_3$ CQDs is slightly bule shifted.

Fig. S3. SEM image of ZnO particles. These particles have regular shape which guarantee the application of microcavity. Inset: magnified image of an individual ZnO particles.

Fig. S4. Lasing in a CsPb(Br_{0.5}I_{0.5})₃ CQDs/ZnO particle composite microcavity. a, PL spectra of pure ZnO particle, pure CsPb(Br_{0.5}I_{0.5})₃ CQDs and their composite. b, Power dependent lasing from a single CsPb(Br_{0.5}I_{0.5})₃ CQDs/ZnO particle composite microcavity. c, Integrated emission Intensity as a function of pump density showing lasing threshold at 0.1 μ J.cm⁻². d, Lorentz fitting of a lasing oscillation mode. The corresponding FWHM is ~0.17 nm, and the *Q* factor is ~3700.

Fig. S5. Excitation power-dependent lasing from a single $CsPb(Br_{0.5}I_{0.5})_3$ CQDs/ZnO composite microcavity with CQDs of 5mg/ml (a) and 15mg/ml concentration (b).

Fig. S6. The resonant optical modes of ZnO microrods/CsPb(Br_{0.5}I_{0.5})₃ CQDs with different ZnO sizes.