Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Layered SnSe₂ microflakes and SnSe₂/SnO₂ heterojunctions for low-temperature

chemiresitive-type gas sensing

Xinyu Li^a, Wei Liu^a, Baoyu Huang^{*a}, Hang Liu^a, Xiaogan Li^{a*}

^a School of Microelectronics, Key Lab. of Liaoning for Integrated Circuits Technology, Dalian

University of Technology, China,

*Corresponding authors. E-mail address: huangby@dlut.edu.cn (B. Huang), lixg@dlut.edu.cn (X.

Li).

Fig.S1. (a) ~ (e) The EDS mapping analysis of $SnSe_2/SnO_2$.

Table S1. The results of the ratio of t	he integrated area under	each peak in XPS.
--	--------------------------	-------------------

XPS – O 1s	SnSe ₂	SnSe ₂ /SnO ₂ -400	SnSe ₂ /SnO ₂ -500	SnO_2
Area (530.7eV)	-	38211.3	67447.0	83634.7
Area (531.8eV)	20831.3	16460.2	29141.4	22368.9

Fig. S2. Response of the SnSe₂/SnO₂-500°C-1h sensor to 8 ppm of NO₂, ammonia, methanol, ethanol, acetone, and formaldehyde at different operating temperatures.

Fig. S3. Response of the SnSe₂/SnO₂-500°C-1h based sensor to 8 ppm NO₂ at different operating

temperatures.

Table S2. The comparison between the response of $SnSe_2$ and $SnSe_2/SnO_2$ heterojunctions to NO_2

Materials	R _{NO2}	R _{NH3}	R _{NO2} / R _{NH3}
SnSe ₂	38.2%	7.4%	5.16
SnSe ₂ /SnO ₂	560%	8.1%	69.13

and to NH_{3.}

Fig. S4. The dynamic response curves of SnSe₂ sensor to NO₂ under different humidity

conditions.

Fig. S5. The structure models of $SnSe_2$ with adsorbed $NO_2(a)$ and adsorbed $NH_3(b)$ molecules.