SUPPORTING INFORMATION

for Fe³⁺ detection and drug delivery

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10 1039/x0xx00000x

Lei Wang,^{a,b} Hongxiang Zhu,^{a,b} Guotao Xu,^c Xudong Hou,^{a,b} Hui He^{a,b,*} and Shuangfei Wang^{a,b}

Biocompatible cellulose-nanofiber-based multifunctional material

Effect of Fe²⁺ and high concentration of interfering ions on detection of CNF-DA for Fe³⁺

The detection of Fe²⁺ ions by CNF-DA and the influence of high concentration of interfering ions on the detection of Fe³⁺ ions were shown in Fig. S1. Since Fe²⁺ is easy to be oxidized to Fe³⁺ in the detection process, the reducing agent ascorbic acid (AC) (0.2 g) was added in the solution preparation process to prevent the oxidation of Fe²⁺. The results showed that CNF-DA had no color response to Fe²⁺ solution with a concentration of 10⁻⁴ mol/L (Fig. S1(a) ①) and 10⁻⁵ mol/L (Fig. S1(a) ②) in the present of AC. However, CNF-DA showed the color changed similar to low concentration Fe³⁺ when the solution of Fe²⁺ (10⁻⁵ mol/L) without AC (Fig. S1(a) ③), indicating that the solid CNF-DA sensor could detect Fe³⁺ but not Fe²⁺.

In order to confirm the oxidation process of Fe²⁺ solution, 10.0 mL Fe²⁺ solution (10⁻³ mol/L) and 10.0 mL Fe²⁺ solution (10⁻³ mol/L) with 0.1 g AC were prepared. Then 1.0 mL NaOH (10⁻² mol /L) solution was added in the above solution at 1 min and 10 min (Fig. S1(b)), respectively. It can be seen from the Fig. S1 (b), the green precipitate was produced between the reaction of Fe²⁺ with AC and NaOH within 10 minutes, while the red precipitate was produced when that without AC, which indicated that part of Fe²⁺ ions had been oxidized to Fe³⁺, and the AC could prevent the oxidation of Fe²⁺.

The effect of high concentration of interfering ions on detection of CNF-DA for Fe³⁺ was investigated. The mixed solution with high concentration of interfering ions (10^{-4} mol/L) and low concentration of Fe³⁺ (10^{-6} mol/L), AC was not added into the solution due to that AC could reduce Ag⁺ and Fe³⁺ in mixed solution. The solid CNF-DA sensor also exhibited color changes for the detection of Fe³⁺ in the presence of high concentration

Corresponding author E-mail: gxuhh@gxu.edu.cn

of interfering ions although the concentration of the interfering ions (Fe²⁺, Cu²⁺, Mn²⁺, Hg²⁺ and Ag⁺) is 100 times of that of Fe³⁺ ions (Fig. S1(a) ④ and ⑤). The results further confirmed the superior recognition ability of CNF-DA to Fe³⁺.

For the CNF-DA spectrophotometric sensor, the UV absorption

Fig. S1 (a) CND-DA detect for Fe²⁺ (10^4 mol/L) with AC \odot , Fe²⁺ (10^5 mol/L) with AC \odot , Fe²⁺ (10^5 mol/L) \odot , mixed ions 1 (Pb²⁺ (10^4 mol/L) and Fe³⁺ (10^6 mol/L) \odot , mixed ions 2 (Fe²⁺, Cu²⁺, Mn²⁺, Hg²⁺ and Ag⁺ (10^4 mol/L) and Fe³⁺ (10^6 mol/L) \odot , H₂O \odot , (b) Fe²⁺ (10^{-3} mol/L) under different conditions, (c) UV spectrum of CNF-DA for Fe³⁺ (10^6 mol/L) and ther ions (10^4 mol/L), (d) UV spectrum of CNF-DA with Pb²⁺ (10^4 mol/L) and Fe³⁺ (10^{-6} mol/L)

peak intensity at 196 nm was almost not affected by Fe2+ (Fig. S1(c)). This was consistent with the detection results of the solid CNF-DA sensor. When the concentration of interfering ions was 100 times as much as that of Fe³⁺, the CNF-DA spectrophotometric sensor still had a highly selective property of Fe³⁺ except Pb²⁺. However, the detect of CNF-DA for high concentration Pb²⁺ appeared a new peak at 210 nm. Therefore, the interference of Pb²⁺ could be eliminated through the change of the UV spectral shape.

^{a.} School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China

^{b.} Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China

^c Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning 530007, China

The experiment process of DOX loading on CNF-DA

CNF-DA sample (5.00 mg) was dispersed in a 10.0 mL centrifuge tube containing 1.0 mL distilled water, and then amount of DOX (1 mg/mL) was added in the solution. The centrifuge tube was covered with foil to prevent DOX decomposition and placed in a thermostatic gas oscillator to oscillate for 24 h at 25 °C. After that, the sample was centrifuged and washed with distilled water until no DOX separate out. The sample was freeze-dried to obtain the drug loaded CNF-DA-DOX aerogel. The DOX loading capacity was calculated by formula (S1).

$$A = \frac{1 \cdot x - \sum_{0}^{i} Ci \cdot yi}{m} / 1000$$
(S1)

where A (mg/g) is the loading capacity of DOX on CNF-DA, 1 (mg/mL) is the concentration of DOX in the solution, χ (mL) is the volume of DOX, i is the number of washing times, *Ci* (mg/mL) is the concentration of DOX in washing solution, *yi* (mL) is the volum of washing solution, and *m* (mg) is the quality of CNF-DA. The drug loading capacity of CNF-DA was shown in Fig. 8, and the maximum drug loading capacity of CNF-DA was 879.09 mg/g.

This journal is © The Royal Society of Chemistry 2020J. Mater. Chem. C, 2013, 00, 1-3 | 2