Supplementary information

Influence of mechanical, thermal, and electrical perturbations on the dielectric behaviour of guest-encapsulated HKUST-1 crystals

Arun Singh Babal and Jin-Chong Tan*

Multifunctional Materials and Composites (MMC) Laboratory,

Department of Engineering Science, University of Oxford,

Parks Road, Oxford, OX1 3PJ, U.K.

* jin-chong.tan@eng.ox.ac.uk

Contents

1. Morphological and topological studies on HKUST-1 MOF powder and pellets									
1	1.1 Particle size measurement	3							
	1.1.1 Scanning electron microscopy (SEM)								
	1.1.2 Atomic force microscopy (AFM)	4							
2.	Fourier transform Infrared spectroscopy (FTIR) of pressure pellets	5							
3. pea	3. Effect of pelleting pressure on FWHM (Full width at half maximum) value of the characteristic XRD peak6								
4.	N_2 Adsorption-desorption and thermal stability of HKUST-1 samples	9							
5. Optical microscopy for pellet roughness measurements									
5	5.1 HKUST-1-S pellets	10							
5	5.2 HKUST-1-T pelletS	12							
6.	Dielectric properties of activated HKUST-1	14							
e	.1 Real part of dielectric constant ($arepsilon$)								
	6.1.1 HKUST-1-S pellets	14							
	6.1.2 HKUST-1-T pellets	16							
e	6.2 Imaginary part of dielectric constant ($arepsilon$ ")								
	6.2.1 HKUST-1-S pellets								
	6.2.2 HKUST-1-T pellets	20							
e	6.3 Loss tangent (tan δ)	22							
	6.3.1 HKUST-1-S pellets	22							
	6.3.2 HKUST-1-T pellets	24							
7	Dielectric properties under ambient conditions (44% RH)	26							
7	7.1 Real part of dielectric constant (ε ')	26							

	7.2	Imaginary part of dielectric constant ($arepsilon$ ")	27					
	7.3	Loss Tangent (tan δ)	28					
8	Con	ductivity measurements	29					
	8.1	AC conductivity ($\sigma_{\scriptscriptstyle AC}$)	29					
	8.1.2	1 HKUST-1-S pellets	29					
	8.1.2	2 HKUST-1-T pellets	31					
	8.2	Impedance measurements (Z^*)	33					
	8.2.2	1 HKUST-1-S pellets	33					
	8.2.3	Complex impedance of pellets at ambient conditions (44% RH)	37					
9	9 Equivalent circuit data fitting of impedance plot							
9.1 HKUST-1-S pellets								
	9.2 I	HKUST-1-T	10					

- 1. Morphological and topological studies on HKUST-1 MOF powder and pellets
- 1.1 Particle size measurement
- 1.1.1 Scanning electron microscopy (SEM)

Figure S1: Measurement of total 50 individual particles of HKUST-1-S from the SEM images. The averaged particle size is $1.5 \pm 0.74 \mu m$.

1.1.2 Atomic force microscopy (AFM)

Figure S2: Measurement of total 50 individual particles of HKUST-1-S from the AFM image. The averaged particle size is 47.89 ± 17.36 nm.

Figure S3: Normalized FTIR spectra of different type of HKUST-1-S and HKUST-1-T MOF pressure pellets.

3. Effect of pelleting pressure on FWHM (Full width at half maximum) value of the characteristic XRD peak

Figure S4: (a) XRD patterns of the HKUST-1 pellets prepared under a compressive force of 0.5t to 7t. (b) Comparison of the simulated XRD pattern of HKUST-1 with the as-synthesized powders of HKUST-1-S and HKUST-1-T (both without background subtraction), normalized to the (222) peak which has the highest intensity. HKUST-1-T exhibits a broad peak from 2θ of $\sim 6^{\circ}$ to 14° that superimpose the sharp Bragg peaks in the same region, thereby suggesting the presence of some semi-crystalline or amorphous products.

Figure S5: FWHM vs pelleting pressure plot for HKUST-1-S and HKUST-1-T samples.

4. N₂ Adsorption-desorption and thermal stability of HKUST-1 samples

Figure S6: (a) Nitrogen adsorption-desorption isotherms of powder samples of HKUST-1-S (blue) and HKUST-1-T (red) at 77 K. The BET surface areas of the HKUST-1-S and HKUST-1-T samples are 1007 m²/g and 165 m²/g, respectively. (b) Pore size distributions determined from non-linear DFT model, assuming a combination of slit-shape and cylindrical-shape pores typically applied in MOF analysis. HKUST-1-S has predominantly micropores of < 2 nm, whereas HKUST-1-T is comprising mesopores from *ca*. 2-20 nm. (c) Thermo-gravimetric analysis plot of HKUST-1 samples as a function of temperature. The hump in the derivative plot suggests the presence of NEt₃ molecules resulted in [Cu₃(BTC)₂].1.5N(CH₂CH₃)₃.

5. Optical microscopy for pellet roughness measurements

5.1 HKUST-1-S pellets

Figure S7: HKUST-1-S pellet surface roughness characterization using Alicona Infinite Focus Microscope at 20× optical magnification: (a)-(b) 0.5 ton, (c)-(d) 1 ton, (e)-(f) 3 ton, (g)-(h) 5 ton, (i)-(j) 7 ton, (k) pellet roughness profile by using the profile line width of 80 μ m, respectively. (RMS=Root mean square roughness of profile)

RMS=49 nm

Figure S8: HKUST-1-T pellet surface roughness characterization using Alicona Infinite Focus Microscope at 20× optical magnification: (a)-(b) 0.5 ton, (c)-(d) 1 ton, (e)-(f) 3 ton, (g)-(h) 5 ton, (i)-(j) 7 ton, (k) pellet roughness profile by using the profile line width of 80 μ m, respectively. (RMS=Root mean square roughness of profile)

- 6. Dielectric properties of activated HKUST-1
- 6.1 Real part of dielectric constant (ε')
- 6.1.1 HKUST-1-S pellets

Figure S9: Temperature dependent real part of the dielectric constant as a function of frequency for HKUST-1-S pellets prepared under a compression load of: (a) 0.5 ton, (b) 1 ton, (c) 3 ton, (d) 5 ton and (e) 7 ton, corresponding to the pressure of 36.96, 73.92, 221.76, 369.6 and 517.44 MPa, respectively

Figure S10: Temperature dependent real part of dielectric constant as a function of frequency for HKUST-1-T pellets: (a) 0.5 ton, (b) 1 ton, (c) 3 ton, (d) 5 ton and (e) 7 ton.

6.2 Imaginary part of dielectric constant (ε'')

6.2.1 HKUST-1-S pellets

Figure S11: Temperature dependent imaginary part of the dielectric constant as a function of frequency for HKUST-1-S pellets prepared under a compression load of: (a) 0.5 ton, (b) 1 ton, (c) 3 ton, (d) 5 ton and (e) 7 ton, corresponding to the pressure of 36.96, 73.92, 221.76, 369.6 and 517.44 MPa, respectively.

6.2.2 HKUST-1-T pellets

S20

Figure S12: Temperature dependent Imaginary part of dielectric constant as a function of frequency for HKUST-1-T pellets: (a) 0.5 ton, (b) 1 ton, (c) 3 ton, (d) 5 ton and (e) 7 ton.

6.3 Loss tangent (tan δ)

6.3.1 HKUST-1-S pellets

Figure S13: Temperature dependent dielectric loss as a function of frequency for HKUST-1-S pellets prepared under a compression load of: (a) 0.5 ton, (b) 1 ton, (c) 3 ton, (d) 5 ton and (e) 7 ton, corresponding to the pressure of 36.96, 73.92, 221.76, 369.6 and 517.44 MPa, respectively.

Figure S14: Temperature dependent dielectric loss as a function of frequency for HKUST-1-T pellets: (a) 0.5 ton, (b) 1 ton, (c) 3 ton, (d) 5 ton and (e) 7 ton.

- 7 Dielectric properties under ambient conditions (44% RH)
- 7.1 Real part of dielectric constant (ε ')

Figure S15: Real part of dielectric constant of (a) HKUST-1-S and (b) HKUST-1-T pellets at ambient condition (44% RH). The HKUST-1-T pellets shows relatively lower ε' value over HKUST-1-S pellets due to the presence of NEt₃ molecule in the pore causing lesser moisture adsorption. In the case of HKUST-1-T samples, the ε' value increases with pelleting pressure up to a certain extent due to the increase in the structural density and interaction between the water and guest molecule, whereas the decrease in the HKUST-1-S samples is mainly contributed by the water expulsion causing reduction in the overall dipole moment.

7.2 Imaginary part of dielectric constant (ε'')

Figure S16: Imaginary part of dielectric constant of (a) HKUST-1-S and (b) HKUST-1-T pellets at ambient condition.

7.3 Loss Tangent (tan δ)

Figure S17: Dielectric loss of (a) HKUST-1-S and (b) HKUST-1-T pellets at ambient condition.

- 8 Conductivity measurements
- 8.1 AC conductivity (σ_{AC})
- 8.1.1 HKUST-1-S pellets (a)

Figure S18: Temperature dependent Ac conductivity as a function of frequency for HKUST-1-S pellets prepared under a compression load of: (a) 0.5 ton, (b) 1 ton, (c) 3 ton, (d) 5 ton and (e) 7 ton, corresponding to the pressure of 36.96, 73.92, 221.76, 369.6 and 517.44 MPa, respectively.

8.1.2 HKUST-1-T pellets

Figure S19: Temperature dependent AC conductivity as a function of frequency for HKUST-1-T pellets: (a) 0.5 ton, (b) 1 ton, (c) 3 ton, (d) 5 ton and (e) 7 ton.

- 8.2 Impedance measurements (Z^*)
- 8.2.1 HKUST-1-S pellets

Figure S21: Temperature dependent impedance as a function of frequency for HKUST-1-S pellets prepared under a compression load of: (a) 0.5 ton, (b) 1 ton, (c) 3 ton, (d) 5 ton and (e) 7 ton, corresponding to the pressure of 36.96, 73.92, 221.76, 369.6 and 517.44 MPa, respectively.

Figure S22: Temperature dependent impedance as a function of frequency for HKUST-1-T pellets: (a) 0.5 ton, (b) 1 ton, (c) 3 ton, (d) 5 ton and (e) 7 ton.

Figure 23: Plot Complex impedance with frequency for (a) HKUST-1-S and (b) HKUST-1-T at ambient condition.

9 Equivalent circuit data fitting of impedance plot

9.1 HKUST-1-S pellets

Figure 24: Impedance plot of real impedance vs imaginary impedance with the equivalent circuit curve fit at 20 °C for HKUST-1-S: (a) 0.5 ton, (b) 1 ton, (c) 3 ton, (d) 5 ton and (e) 7 ton, corresponding to the pressure of 36.96, 73.92, 221.76, 369.6 and 517.44 MPa, respectively.

9.2 HKUST-1-T

Figure 25: Impedance plot of real impedance vs imaginary impedance with the equivalent circuit at 20 °C for HKUST-1-T: (a) 0.5 ton, (b) 1 ton, (c) 3 ton, (d) 5 ton and (e) 7 ton.

Sample designation			Conductivity (S cm ⁻¹)		
	HKUST-1-S		HKUST-1-T		
	20 °C	100 °C	20 °C	100 °C	
0.5t	1.65×10 ⁻⁸	2.79×10 ⁻⁸	2.51×10 ⁻⁸	1.16×10 ⁻⁷	
1t	2.51×10 ⁻⁸	2.23×10 ⁻⁸	5.63×10 ⁻⁸	1.39×10 ⁻⁷	
3t	2.59×10 ⁻⁸	2.32×10 ⁻⁸	8.40×10 ⁻⁸	2.05×10 ⁻⁷	
5t	2.16×10 ⁻⁸	2.98×10 ⁻⁸	1.58×10-7	4.39×10 ⁻⁷	
7t	4.21×10 ⁻⁸	4.25×10 ⁻⁸	1.020×10 ⁻⁷	5.37×10 ⁻⁷	

Table S1: Conductivity of HKUST-1 pellets calculated by fitting the equivalent circuit in the impedance data.