Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

The Role of Third Cation Doping on Phase Stability, Carrier Transport and Carrier Suppression in Amorphous Oxide Semiconductors

Austin Reed^b, Chandon Stone^b, Kwangdong Roh^c, Han Wook Song^d, Xingyu Wang^a, Mingyuan

Liu^a, Dong-Kyun Ko^e, Kwangsoo No^f and Sunghwan Lee^{a,*}

^a School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA

^b Department of Mechanical Engineering, Baylor University, Waco, TX 76798, USA

^c Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA

^d Center for Mass and Related Quantities, Korea Research Institute of Standard and Science, Daejeon 34113, South Korea

^e Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA

^f Department of Materials Science and Engineering, KAIST, Daejeon 34141, South Korea

Keywords: amorphous oxide semiconductors; phase stability; carrier transport; Al doping; indium oxides; InZnO

*Corresponding authors: sunghlee@purdue.edu

EDS Measurements

X-ray energy dispersive spectroscopy (EDS) measurements to identify the concentration of a series of IAZO were made as a function of rf power (10, 20 and 30 W) for Al during co-sputtering while maintaining dc power (20 W) for IZO to incorporate Al into the IZO matrix. According to the EDS measurements, the concentration (wt.%) of Al in the IAZO films was determined to be 4, 8.9 and 16.7 wt.%.

Figure S1. EDS elemental analysis to identify the concentration of Al in a series of IAZO films.