Electronic Supplementary Information: Control of Magneto-

Optical Properties of Co-Layers by Adsorption of α-Helical Polyalanine Self-Assembled Monolayers

Apoorva Sharma^{a, *}, Patrick Matthes^b, Ivan Soldatov^{c,d}, Sri Sai Phani Kanth Arekapudi^a, Benny Böhm^a, Marina Lindner^a, Oleksandr Selyshchev^a, Nguyen Thi Ngoc Ha^a, Michael Mehring^{e,f}, Christoph Tegenkamp^a, Stefan E Schulz^b, Dietrich R. T. Zahn^{a,f}, Yossi Paltiel^{g,h}, Olav Hellwig^{a,f,i}, and Georgeta Salvan^{a,f,*}

- *a.* Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany.
- ^{b.} *E-mail: <u>salvan@physik.tu-chemnitz.de</u>; <u>apoorva.sharma@physik.tu-chemnitz.de</u>
- ^{c.} Fraunhofer Institute for Electronic Nanosystems, 09126 Chemnitz, Germany
- ^{d.} Leibniz Institute for Solid State and Materials Research (IFW) Dresden, 01069 Dresden, Germany
- e. Ural Federal University, Institute of Natural Sciences and Mathematics, 620002 Yekaterinburg, Russia
- ^{f.} Institute of Chemistry, Chemnitz University of Technology, 09126 Chemnitz, Germany
- ^{g.} Zentrum für Materialien, Architektur und Integration von Nanomembranen (MAIN), Chemnitz University of Technology, 09126 Chemnitz, Germany
- ^{h.} Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, Israel
- ^{*i.*} Israel Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, Israel
- ^{j.} Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

Figure S1. θ -2 θ scan recorded for the Si/SiO2(100 nm)/Ta(2 nm)/Pt(5 nm)/Au(20 nm)/Co(1.1 nm)/Au(5 nm) layer stack. The observed reflexes are marked with respective elements and crystal orientation. The reflex around 38° is the cumulative response from Au (111) at 38.18° (bulk value), strained Pt (111) at 39.76° (bulk value), and strained Co (111) 44.21° (bulk value). The two shoulder peaks visible on either side of this peak are the interference oscillations due to the vertically coherent multi-layer structure with similar lattice spacings. The diffraction peak at 81.5° is attributed to the second-order diffraction of the Au (111), i.e. labelled as. Au (222) reflex.

Figure S2. SQUID-VSM measured magnetisation loops for the layer stack Si/SiO₂(100 nm)/Ta(2 nm)/Pt(5 nm)/Au(20 nm)/Co(1.1 nm)/Au(5 nm), with the applied magnetic field in-plane (grey) and out-of-plane(red) geometry. The inset shows the close-up near magnetisation reversal.

The Cauchy dispersion layer is represented by the refractive index, which is mathematically described by an inverse power series of wavelength (λ) with only even terms, and by the extinction coefficient, which is described by an exponential function. These representations are as follows:

Cauchy layer details

$$n(\lambda) = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4}$$
$$k = k_{amn} e^{exp(E - band \ edge)}$$

The A, B, C parameters determine the refractive index dispersion. k_{amp} and exp are parameters which determine the

 $E = h \frac{c}{\lambda}$ line shape of the extinction coefficient dispersion. *edge* is the onset of absorption due to the bandgap and it is directly correlated to the k_{amp} parameter. [ref. 14 in the manuscript]. The values of the Cauchy parameters used in our study are listed below.

A = 1.45	B = 0.01 nm ⁻²	C = 0.00 nm ⁻⁴	$k_{amp} = 0.00$ (for $E < band edge$)
<i>exp</i> = 1.50	<i>band edge</i> = 3.10 eV		

Figure S3. The delta (Δ) and difference spectra $(\delta\Delta)$ for the Au-substrate (a.) along with the $(\delta\Delta)$ spectrum simulation with different t_{cauchy} layer thickness. The best match can be seen for $t_{cauchy} = 0.75$ nm and $t_{BEMA} = 0.2$ nm. The $\delta\Delta$ spectra for Co-substrate- \bigcirc and Co-substrate- \bigotimes are shown in (b), and (c), respectively.

Figure S4. Scanning tunneling microscopy image (a) of deposition of 36-mer polyalanine (PA) molecules on Au(111) on mica substrate, results in highly ordered self-assembled PA chiral film. The interdigitation between adjacent molecules shown in the inset provides a high degree of rotational ordering where neighboring PA molecules (illustrated by the blue triplets) are intertwined; further details can be found in the ref. 20 of the manuscript. The PA molecules within the films are tilted by \approx 50° normal to the surface, as shown in the sketch (b), mainly due to the the Au–S bonding at the interface.