Near-infrared light-emitting electrochemical cells based on excimer emission of a cationic iridium complex

You-Xuan Liu,^{a+} Rong-Huei Yi,^{b+} Chien-Hsiang Lin,^b Zu-Po Yang,^c Chin-Wei Lu,^{b,*}

and Hai-Ching Su^{a,*}

^{*a*} Institute of Lighting and Energy Photonics, National Chiao Tung University, Tainan 71150, Taiwan

^b Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan

^c Institute of Photonic System, National Chiao Tung University, Tainan 71150, Taiwan

+ Equal contribution

To whom to correspond:

E-mail: haichingsu@mail.nctu.edu.tw; Tel: 886-6-3032121-57792

E-mail: cwlu@pu.edu.tw; Tel: 886-4-26328001-15213

Contents

1.	Crystal data	S2
2.	¹ H, ¹³ C and ¹ H- ¹ H COSY NMR spectra	S4
3.	Mass spectra	S5
4.	Theoretical calculation	S6
5.	Excited-state lifetimes of thin films	S 8
6.	Structure and UV/PL spectra of complex RED for comparison	S10

Figure S1. Crystal of complex NIRex. The hydrogen atoms are omitted for clarity.

Complex	NIRex (CCDC 1986267)	
Empirical formula	C58 H34 F6 Ir N6 P	
Formula weight	1152.08	
Temperature	150(2) K	
Wavelength 0.710 [°] Crystal system tricli	0.71073 Å	
Crystal system	triclinic	
Space group	0.71073 A triclinic P -1	
	a = 11.6607(18) Å	
Unit cell dimensions	a = 75.403(5)°.	
	b = 15.168(2) Å	
	$b = 85.538(5)^{\circ}.$	

 Table S1. Crystal data of complex NIRex.

	c = 16.304(3) Å
	$g = 79.408(5)^{\circ}$.
Volume	2741.5(7) Å ³
Z	2
Density (calculated)	1.396 Mg/m ³
Absorption coefficient	2.526 mm ⁻¹
F(000)	1140
Crystal size	0.420 x 0.230 x 0.010 mm ³
Theta range for data	2.817 to 28.080°.
collection	
Index ranges	-15<=h<=15, -20<=k<=19, -20<=l<=21
Reflections collected	51672
Independent reflections	13138 [R(int) = 0.1339]
Completeness to theta =	99.8 %
25.242°	
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9281 and 0.5590
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	13138 / 0 / 649
Goodness-of-fit on F^2	0.991
Final R indices	R1 = 0.0617, wR2 = 0.1453
[I>2sigma(I)]	
R indices (all data)	R1 = 0.1200, wR2 = 0.1797
Extinction coefficient	n/a
Largest diff. peak and hole	2.844 and -3.396 e.Å ⁻³

Figure S2. ¹H NMR spectrum for complex NIRex (400 MHz, DMSO-*d*₆, 298 K).

Figure S3. ¹³C NMR spectrum for complex NIRex (100 MHz, DMSO-*d*₆, 298 K).

Figure S4. ¹H-¹H COSY spectrum (400 MHz, pulse width of 14.0) of complex NIRex

in CDCl₃ at 298 K, the inset is the expansion of the aromatic region.

Figure S5. HRMS-ESI⁺ spectrum of NIRex.

Complex	States	eV ^(a) (nm)	$f^{(b)}$	Monoexcitations ^(c)	Ground state dipole moment [D]
	S ₁	2.06 (601)	0.0066	$H - 4 \rightarrow L (1.3\%)$ H - 2 \rightarrow L (1.2%) H - 1 \rightarrow L (6.6%) H \rightarrow L (40%)	
NIRex	T ₁	1.50 (826)	0.0000	$H - 4 \rightarrow L (8.0\%)$ $H - 4 \rightarrow L + 1 (4.2\%)$ $H - 2 \rightarrow L (3.3\%)$ $H - 2 \rightarrow L + 1 (1.5\%)$ $H - 1 \rightarrow L (4.4\%)$ $H - 1 \rightarrow L + 1 (1.8\%)$ $H \rightarrow L (17\%)$ $H \rightarrow L + 1 (6.7\%)$	5.9337

Table S2. Calculated singlet and triplet states for cationic iridium complex NIRex byTD-DFT approach.

(a) Calculated vertical excitation energies. (b) f = oscillator strength. (c) H and L denote the HOMO and LUMO, respectively; data in parentheses are the contributions of the excitation.

Figure S6. Ground state geometries of complex **NIRex** obtain at B3LYB/6-31G(d)/LanL2DZ level of theory. Hydrogen atoms are omitted for clarity.

Figure S7. Electron density distribution pattern of the frontier molecular orbitals for complex **NIRex**, obtained at B3LYP/6-31G(d,p)/LanL2DZ level of theory.

Figure S8. Excited-state lifetimes at 610 nm of thin films with weight ratios of complex **NIRex** and PMMA of (a) 100 : 0, (b) 60 : 40, (c) 33 : 67, (d) 23 : 77 and (e) 10 : 90.

Figure S9. Excited-state lifetimes at 810 nm of thin films with weight ratios of complex **NIRex** and PMMA of (a) 100 : 0, (b) 60 : 40, (c) 33 : 67, (d) 23 : 77 and (e) 10 : 90.

Figure S10. (a) Structure of complex **RED** for comparison. (b) Absorption (left axis) and PL spectra (right axis) of complex **RED** in MeCN solution $(1.0 \times 10^{-5} \text{ M}, \lambda_{ex} = 385 \text{ nm})$.

Figure S11. (a) Concentration-dependent PL spectra; (b) PL spectra of complex NIRex in MeCN with the increasing of water content (*ca*. $1.0 \ge 10^{-4}$ M, water fraction from 0 to 90% by volume).

Emissive material	$\lambda_{\max, EL}$ $[nm]^a$	L _{max} [µW cm ⁻²] ^b	ηext, max [%] ^c	η _{P, max} [mW W ⁻¹] ^d	Ref.
[Ir(ppy) ₂ (dasb)][PF ₆]:DOTCI (1.0 wt.%)	729	2.42	0.93	6.43	1
[Ir(ppy) ₂ (dasb)][PF ₆]:DTTCI (1.0 wt.%)	805	8.19	1.49	10.16	1
dye H: dye G (0.1 wt.%)	706	170	0.44	-	2
polymers with dinuclear Ru complexes	790	0.016 ^e	5.4 x 10 ^{-6e}	-	3
PIDTT-TQ	705	129	0.1	0.48	4
PBDTTBTzT	723	169	0.135	-	5
PIDTT-SBS	725	263	0.214	-	6
PBDTSi-BDD:ZnP(TDPP)4 (5 wt.%)	900	36	0.028	-	7
[Os(phen)3][PF6]2	710	-	0.08^{e}	-	8
[Ru(tpy)(tpy-O ₂ Et)][PF ₆] ₂	706	-	-	-	9
Ru complex (3)	780	30.8 ^e	0.013	-	10
Ru complex (4)	880	5.7 ^e	0.075	-	10
Ru complex (5)	900	2.5 ^e	0.006	-	10
Ru complex (6)	945	3.1 ^e	0.030	-	10
Ru complex (7)	1040	-	-	-	10
[Ru(tpy-CO ₂ Et)(trz)][PF ₆] ₂	725	-	0.005	-	11
heteroleptic bis(tridentate) Ru complexes	722	-	0.028	-	12
Ru(dtb-bpy)3(PF6)2: DOTCI (1	739	14.9	2.75	9.37	13

 Table S3. Summary of the characteristics of NIR LECs reported in literatures

wt.%)

phenanthroimidazole Ru	700		1 2 (7		14
complex (NE04)	/00	-	1.307	-	
[Ir(ppy) ₂ (2,2'-	705	2600	0.27		15
bibenzo[d]thiazole)][PF6]	/05	260°	0.37	-	15
Ru(dtb-bpy)3(PF6)2	718	33.6	0.64	3.76	16
Ir complex (NIR3)	882	44.1	0.036	0.122	17
Ir complex (NIR6)	790	56.9	0.05	0.181	17
complex RED : complex NIR3	770	10 (0.117	0 7 4 7	17
(20 wt.%)	//8	12.6	0.116	0./4/	17
complex RED : complex NIR6		12 (0.093	0.631	17
(20 wt.%)	//8	13.6			1 /
Ru complex (Bn2)	706	-	0.93	-	18
complex NIRex	860	143	0.26	0.93	this work
complex RED : complex	004	164	0.20	1.46	.1 • 1
NIRex (60 wt.%)	824	164	0.39	1.46	this work
complex RED : complex	000	202	0.57	2.20	.1 • 1
NIRex (40 wt.%)	809	303	0.57	2.20	this work
complex RED : complex	744	(27	0.02	2.20	
NIRex (20 wt.%)	744	637	0.82	3.29	this work

^{*a*} EL peak wavelength. ^{*b*} Maximal light output power. ^{*c*} Maximal external quantum efficiency. ^{*d*} Maximal power efficiency. ^{*e*} Estimated from the reported data.

Abbreviations

- 1. ppy: 2-phenylpyridine
- 2. dasb: 4,5-diaza-9,9'-spirobifluorene
- 3. DOTCI: 3,3'-diethyl-2,2'-oxathiacarbocyanine iodide
- 4. DTTCI: 3,3'-diethylthiatricarbocyanine iodide
- 5. dye H: 1-ethyl-2-[3-(1-ethyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)propenyl]-3,3-dimethyl-3H-indolium hexafluorophosphate
- 6. dye G: 1-butyl-2-[5-(1-butyl-1,3-dihydro-3,3-dimethyl-2Hindol-2-ylidene)-penta-1,3-dienyl]-3,3-dimethyl-3H-indolium hexafluorophosphate
- PIDTT-TQ: poly[indacenodithieno[3,2-b]thiophene-2,8-diyl-alt-2,3-bis(3-(octyloxy)phenyl)-5,8-di(thiophen-2-yl)quinoxaline-5,5'-diyl]
- 8. PBDTTBTzT: polybenzodithiophene 4,7-bis(5-bromothiophen-2-yl)-2-(2hexyldecyl)-2H-benzo[d][1,2,3]triazole
- 9. PIDTT-SBS: poly(indacenodithieno[3,2-b]thiophene) 4,7-Bis(4,4-bis(2-ethylhexyl)-4Hsilolo[3,2-b:4,5-b']dithiophen-2-yl)benzo[c][1,2,5]-thiadiazole
- 10. PBDTSi-BDD: poly[1,3-bis(2-ethylhexyl)-5-(5-(6-methyl-4,8-bis(5-(tributylsilyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophen-2-yl)thiophen-2-yl)-7-(5-methylthiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c']dithiophene-4,8-dione]
- 11. TDPP: 2,5-thienyl diketopyrrolopyrrole
- 12. phen: 1,10-phenanthroline
- 13. tpy: terpyridine
- 14. trz: 2-phenyl-4,6-dipyridin-2-yl-1,3,5-triazine
- 15. dtb-bpy is 4,4'-ditertbutyl-2,2'-bipyridine

References

- 1. C.-C. Ho, H.-F. Chen, Y.-C. Ho, C.-T. Liao, H.-C. Su, K.-T. Wong, Phys. Chem. Chem. Phys., 2011, 13, 17729.
- 2. A. Pertegás, D. Tordera, J. J. Serrano-Pérez, E. Ortí, H. J. Bolink, J. Am. Chem. Soc., 2013, 135, 18008.
- 3. S. Wang, X. Li, S. Xun, X. Wan, Z. Y. Wang, *Macromolecules*, 2006, **39**, 7502.
- 4. S. Tang, P. Murto, X. Xu, C. Larsen, E. Wang, L. Edman, Chem. Mater., 2017, 29, 7750.
- 5. W. Xiong, S. Tang, P. Murto, W. Zhu, L. Edman, E. Wang, Adv. Opt. Mater., 2019, 7, 1900280.
- 6. S. Tang, P. Murto, J. Wang, C. Larsen, M. R. Andersson, E. Wang, L. Edman, Adv. Opt. Mater., 2019, 7, 1900451.
- 7. M. Mone, S. Tang, P. Murto, B. A. Abdulahi, C. Larsen, J. Wang, W. Mammo, L. Edman, E. Wang, Chem. Mater., 2019, 31, 9721.
- 8. A. R. Hosseini, C. Y. Koh, J. D. Slinker, S. Flores-Torres, H. D. Abruña, G. G. Malliaras, Chem. Mater., 2005, 17, 6114.
- 9. H. J. Bolink, L. Cappelli, E. Coronado, P. Gaviña, Inorg. Chem., 2005, 44, 5966.
- 10. S. Xun, J. Zhang, X. Li, D. Ma, Z. Y. Wang, Synth. Met., 2008, 158, 484.
- 11. H. J. Bolink, E. Coronado, R. D. Costa, P. Gaviña, E. Ortí, S. Tatay, Inorg. Chem., 2009, 48, 3907.
- 12. A. Breivogel, M. Park, D. Lee, S. Klassen, A. Kühnle, C. Lee, K. Char, K. Heinze, Eur. J. Inorg. Chem., 2014, 2014, 288.
- 13. C.-L. Lee, C.-Y. Cheng, H.-C. Su, Org. Electron., 2014, 15, 711.
- 14. B. N. Bideh, C. Roldán-Carmona, H. Shahroosvand, M. K. Nazeeruddin, J. Mater. Chem. C, 2016, 4, 9674.
- 15. A. K. Pal, D. B. Cordes, A. M. Z. Slawin, C. Momblona, A. Pertegás, E. Ortí, H. J. S15

Bolink, E. Zysman-Colman, RSC Adv., 2017, 7, 31833.

- 16. J.-H. Hsu, H.-C. Su, Phys. Chem. Chem. Phys., 2016, 18, 5034.
- 17. G.-Y. Chen, B.-R. Chang, T.-A. Shih, C.-H. Lin, C.-L. Lo, Y.-Z. Chen, Y.-X. Liu, Y.-R. Li, J.-T. Guo, C.-W. Lu, Z.-P. Yang, H.-C. Su, *Chem.–Eur. J*, 2019, **25**, 5489.
- 18. B. Nemati Bideh, H. Shahroosvand, New J. Chem. 2020, 44, 1881.