Supporting information

All-exciplex-based white organic light-emitting diodes by employing an interface-free sandwich light-emitting unit achieving high electroluminescence performance

Yuanyuan Guo^{a,1}, Yaping Zhao^{b,1}, Yanqin Miao^{b,*}, Longsheng Wang^a, Tianbao Li^b, Hua Wang^b, Bingshe Xu^{b,c,*}, Jnsheng Yu^d

^aKey Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China ^bKey Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China ^cMaterials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China

^dState Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China ¹Yuanyuan Guo and Yaping Zhao contributed equally to this work.

Corresponding E-mails: miaoyanqin@tyut.edu.cn (Yanqin Miao); xubs@tyut.edu.cn(Bingshe Xu)

Section S1

The ITO substrates were cleaned first with acetone, deionized water and acetone, and then dried in drying cabinet, and treated with ultraviolet-ozone for 15 min. After these processes, the cleaned ITO glass substrates were loaded in a vacuum chamber, a base pressure of $\leq 5 \times 10^{-4}$ Pa, for film deposition using thermal evaporation technology. The deposition rate and film thickness were monitored controlled by the calibrated crystal quartz sensors, e.g., the deposition rates of organic materials, MoO₃, LiF, and cathode Al were controlled at about 1 Å/s, 0.3 Å/s, 0.1 Å/s, and 3–6 Å/s, respectively. Organic films for PL measurements were fabricated with the same method as device fabrication. The EL spectra and CIE coordinates of all OLEDs were measured by a computer controlled PR-655 spectra scan spectrometer. The current density-voltage-luminance characteristics, current efficiency, and power efficiency were recorded by a computercontrolled Keithley 2400 source integrated with a BM-70A luminance meter. The EQE was calculated from the current density-voltage-luminance curve and spectra data.

Fig. S1 The normalized phosphorescence spectra for mCP:PO-T2T(1:1, 100 nm), PO-T2T:TPD(1:1, 100 nm), and TPD:Bphen(1:1, 100 nm) films at 77 K.

Table S1 Summary of key parameters for three mCP:PO-T2T-, PO-T2T:TPD- and TPD:Bphen-

Exciplex	PL peak	S_1^a	T_1^{b}	ΔE_{ST}^{c}	$\tau 1^d$	$\tau 2^{e}$	PLQY ^f
	(nm)	(eV)	(eV)	(eV)	(ns)	(ns)	(%)
mCP:PO-T2T	471	2.63	2.61	0.02	380.00	7380.00	17.76
PO-T2T:TPD	565	2.20	2.14	0.06	8.62	48.20	4.90
TPD:Bphen	462	2.68	2.35	0.33	8.13	36.49	6.18

forming exciplex.

 ${}^{a}S_{1}$ is the singlet energy level;

 ${}^{b}T_{1}$ is the triplet energy level;

 $^{c}\Delta E_{ST}$ is the singlet-triplet energy splitting;

 ${}^{d}\tau 1$ is the prompt lifetime;

 $e\tau 2$ is the delayed lifetime;

^fThe PLQY of three exciplex are tested by using the integrating sphere method at an atmosphere environment.

Fig. S2 The current density-voltage-luminance curves for devices B1, B2 and Y.

Fig. S3 The normalized EL spectra, CIE coordinates and CRI of four devices W1-W4 at different

voltages from 5V to 8V.

Fig. S4 The device structure (a) and energy levels (b) diagrams for white device W5; The normalized EL spectra, CIE coordinates and CRI under different voltages (c), current density-voltage-luminance curves (d), and current efficiency-luminance-power efficiency curves (e) for the white devices W5.

Fig. S5 The device structure (a) and energy levels (b) diagrams for white deviceW6; The normalized EL spectra, CIE coordinates and CRI under different voltages (c), current density-voltage-luminance curves (d), and current efficiency-luminance-power efficiency curves (e) for the white devices W6.