Supporting Information

Engineering Functionalized Low LUMO [1]Benzothieno[3,2-

b][1]benzothiophenes (BTBTs): Unusual Molecular and Charge Transport

Properties

Resul Ozdemir,^{†1} Kyunghan Ahn,^{†2} İbrahim Deneme,¹ Yunus Zorlu,³ Dojun Kim,²

Myung-Gil Kim,² Hakan Usta^{1*}

¹ Department of Materials Science and Nanotechnology Engineering, Abdullah Gül University, Kayseri 38080, Turkey.

² School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 2066 Republic of Korea.

³ Department of Chemistry, Gebze Technical University, Gebze, Kocaeli 41400, Turkey.

*Address correspondence to: <u>hakan.usta@agu.edu.tr</u>

[†] These authors contributed equally to this work.

Figure S1. Theoretical (DFT/B3LYP/6-31G**) HOMO/LUMO energy levels of **D**(**C**₇**CO**)-**BTBT** along with topographical orbital representations for different functionalization positions.

Figure S2. Theoretical (DFT/B3LYP/6-31G**) HOMO/LUMO energy levels of $D(C_7CC(CN)_2)$ -BTBT along with topographical orbital representations for different functionalization positions.

Figure S3. ¹H NMR spectra of D(C₇CO)-BTBT measured in CDCl₃.

Figure S4. ¹³C NMR spectra of D(C₇CO)-BTBT measured in CDCl₃.

Figure S5. Positive ion and linear mode MALDI TOF-MS spectrum of D(C₇CO)-BTBT.

Figure S6. ¹H NMR spectra of C₇CO-BTBT-CC(CN)₂C₇ measured in CDCl₃.

Figure S7. ¹³C NMR spectra of C₇CO-BTBT-CC(CN)₂C₇ measured in CDCl₃.

Figure S8. Positive ion and linear mode MALDI TOF-MS spectrum of C₇CO-BTBT-CC(CN)₂C₇.

8.10 8.07 8.05 8.05 7.60 7.60

Figure S9. ¹H NMR spectra of D(C₇CC(CN)₂)-BTBT measured in CDCl₃.

Figure S10. ¹³C NMR spectra of D(C₇CC(CN)₂)-BTBT measured in CDCl₃.

Figure S11. Positive ion and linear mode MALDI TOF-MS spectrum of D(C₇CC(CN)₂)-BTBT.

Figure S12. FT-IR spectra of $D(C_7CO)$ -BTBT, C_7CO -BTBT-CC(CN)₂C₇, and $D(C_7CC(CN)_2)$ -BTBT showing C=O (1680 cm⁻¹) and C=N (2227 cm⁻¹) stretching vibrational peak.

Figure S13. Computationally optimized (DFT/B3LYP/6-31G**) molecular structures for **D**(**C**₇**CO**)-**BTBT** (A) and **D**(**C**₇**CC**(**CN**)₂)-**BTBT** (B) showing the torsion and dihedral angles (θ_{torsion} and θ_{dihedral}) between BTBT π -system and carbonyl/dicyanovinylene functional groups.

Figure S14. Computationally optimized (DFT/B3LYP/6-31G**) molecular structure of a hypothetical dicyanovinylene-functionalized BTBT compound, **D**(HCC(CN)₂)-**BTBT**, showing the dihedral angle ($\theta_{dihedral}$) between BTBT π -system and dicyanovinylene functional groups.

Figure S15. Optical absorption spectrum and cyclic voltammogram (0.1 M $Bu_4N^+PF_6^-$, scan rate = 50 mV/s) of C₈-BTBT in dichloromethane solutions.

Figure S16. Optical absorption spectra of $D(C_7CO)$ -BTBT (A), C_7CO -BTBT-CC(CN)₂C₇ (B), and $D(C_7CC(CN)_2)$ -BTBT (C) in hexane, tetrahydrofuran (THF), dichloromethane (DCM), N,N'-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO).

Figure S17. Theoretical (DFT/B3LYP/6-31G**) frontier orbital energies along with topographical representations for conformations of $D(C_7CC(CN)_2)$ -BTBT with varied dihedral angles ($\theta_{dihedral}$) between the BTBT π -system and dicyanovinylene units.

Figure S18. The solvent polarity-dependent (toluene ($f(\varepsilon,n) = 0.014$) \rightarrow dichloromethane ($f(\varepsilon,n) = 0.217$) \rightarrow acetonitrile ($f(\varepsilon,n) = 0.305$)) photoluminescence spectra of **D**(**C**₇**CC**(**CN**)₂)-**BTBT** ($\lambda_{\text{exc}} = 405 \text{ nm}$) in solution ($1.0 \times 10^{-5} \text{ M}$).

Figure S19. Simulated XRD powder patterns based on the single-crystal structures for **D**(C₇**CO)-BTBT** (A) and **D**(C₇**CC**(**CN**)₂)-**BTBT** (B) indicating the selected matching diffraction peaks and lattice planes at $2\theta = 5.79(400)/8.70^{\circ}(600)$ and at $2\theta = 5.25^{\circ}(100)$, respectively.

Figure S20. Grazing incidence X-ray diffraction (GIXD) of **D**(C_7CO)-**BTBT** (30 nm) thin film deposited on n⁺⁺-Si/SiO₂(200 nm)/HMDS substrate at a deposition temperature of 25 °C and the corresponding (020) lattice plane/molecular arrangement.

X-ray data collection and structure refinement

Data were obtained with Bruker APEX II QUAZAR three-circle diffractometer. Indexing was performed using APEX2 [APEX2, version 2014.11-0, Bruker (2014), Bruker AXS Inc., Madison, WI]. Data integration and reduction were carried out with SAINT [SAINT, version 8.34A, Bruker (2013), Bruker AXS Inc., Madison, WI]. Absorption correction was performed by multi-scan method implemented in SADABS [SADABS, version2014/5, Bruker (2014), Bruker AXS Inc., Madison, WI]. The structure was solved using SHELXT¹ and then refined by full-matrix least-squares refinements on F² using the SHELXL² in Olex2 Software Package³. For **D**(C_7CO)-**BTBT** single crystals obtained was very thin size (0.12 mm \times 0.04 $mm \times 0.03 mm$), even with high exposure times (second/frame) is used, they were obviously very weakly diffracting crystals, and it could not be obtained the intensity of higher angle diffraction signals (d = 0.77 Å, $2\Theta = 55^{\circ}$) in the diffraction pattern, which lowered the completeness of higher angle data (completeness of $D(C_7CO)$ -BTBT is only 0.945). In our study, in order to improve the crystal quality of D(C₇CO)-BTBT, we made a large number of crystallization experiments and the most ideal single crystal was reported in this study. Aromatic C-bound H atoms were positioned geometrically and refined using a riding mode. Crystallographic data and refinement details of the data collection for $D(C_7CO)$ -BTBT and $D(C_7CC(CN)_2)$ -BTBT are given in Table S1. Crystal structure validations and geometrical calculations were performed using Platon software⁴. Mercury software⁵ was used for visualization of the cif files. Additional crystallographic data with CCDC reference numbers (1946322 for D(C₇CO)-BTBT and 1946323 for D(C₇CC(CN)₂)-BTBT) have been deposited within the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/deposit.

	D(C ₇ CO)-BTBT	D(C ₇ CC(CN) ₂)-BTBT
CCDC	1946322	1946323
Empirical Formula	$C_{30}H_{36}O_2S_2$	$C_{36}H_{36}N_4S_2$
Formula weight (g. mol ⁻¹)	492.71	588.81
Temperature (K)	296.15	296.15
Wavelength (Å)	$MoK_{\alpha} (\lambda = 0.71073)$	$MoK_{\alpha} (\lambda = 0.71073)$
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	$P2_1/c$
<i>a</i> (Å)	60.991(12)	17.703(10)
b (Å)	7.6857(18)	7.556(3)
c (Å)	5.7799(13)	12.385(5)
α(°)	90	90
β(°)	92.122(16)	106.60(3)
γ(°)	90	90
Crystal size (mm)	$0.12 \times 0.04 \times 0.03$	0.25 imes 0.22 imes 0.08
<i>V</i> (Å ³)	2707.5(10)	1587.6(13)
Z	4	2
ρ_{calcd} (g. cm ⁻³)	1.209	1.232
μ (mm ⁻¹)	0.221	0.199
<i>F</i> (000)	1056	624.0
20 range for data collection (°)	4.01 to 49.98	5.902 to 50.026
h/k/l	$-72 \le h \le 71, -9 \le k \le 8,$	$-12 \le h \le 21, -5 \le k \le 8,$
	$-6 \le l \le 6$	$-14 \le l \le 13$
Reflections collected	9352	6702
Independent reflections	$2264 [R_{int} = 0.1058]$	$2755 [R_{int} = 0.0913,$
	$R_{sigma} = 0.1037$]	$R_{sigma} = 0.1648]$
Data/restraints/parameters	2264/12/156	0.75/-0.55
Goodness-of-fit on F ² (S)	1.743	0.964
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.1840, wR_2 =$	$R_1 = 0.0805, wR_2 =$
	0.4296	0.1969
R indices (all data)	$R_1 = 0.2107, wR_2 =$	$R_1 = 0.1855, wR_2 =$
	0.4418	0.2513
Largest diff. peak and hole (e.Å ⁻³)	1.14/-0.89	0.75/-0.55

Table S1. Crystal data and refinement parameters for D(C₇CO)-BTBT and D(C₇CC(CN)₂)-BTBT.

REFERENCES

- 1 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2015, 71, 3–8.
- 2 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8.
- 3 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Crystallogr.*, 2009, **42**, 339–341.
- 4 A. L. Spek, Acta Crystallogr. Sect. D Biol. Crystallogr., 2009, 65, 148–155.
- 5 C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. Van De Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453–457.