Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Valley splitting in the antiferromagnetic heterostructure MnPSe₃/WSe₂

Bing-Jie Wang^{1,\xi}, Yu-Yun Sun^{1,\xi}, Ju Chen¹, Weiwei Ju⁴, Yi-Peng An⁵, Shi-Jing Gong^{1,2,3,*}

¹Department of optoelectrics, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
²Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
³Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433, China
⁴College of Physics and Engineering and Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang, 471023, China
⁵School of Physics and Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, 453007, China
⁵B –J Wang and Y-Y Sun contributed equally to this work
* E-mail: sjgong@ee.ecnu.edu.cn

Fig. S1 Band structures of (a-d) MnPSe₃ monolayer and (e-h) MnPSe₃/WSe₂ heterostructure with spin orbit coupling (SOC), which are all based on GGA+U method with (a, e) U=0.0 eV, (b, f) U=1.0 eV, (c, g) U=3.0 eV and (d, h) U=5.0 eV.

Fig. S2 Structures and side views of the charge density difference of $MnPSe_3/WSe_2$ heterostructures. Yellow (blue) regions represent the net charge gain (loss), and the isosurface value is 1.2 e/nm³. The corresponding band structures are shown in the right figures, in which blue and red lines represent the states of WSe₂ and MnPSe₃ layers, respectively.

Stacking models	A1	A2	A3	A4	A5
<i>d</i> (Å)	3.500	3.507	3.468	3.447	3.439
$E_{\rm b}~({\rm meV})$	-634.5	-613.9	-646.3	-629.0	-629.4
Valley splitting (meV)	35.4	35.0	40.0	37.0	36.9

Table S1. Calculated binding energy E_b (meV), the interlayer distance d (Å) and valley splitting (meV) of MnPSe₃/WSe₂ heterostructures with different stacking models.