Supporting Information

Large-area Printed Low-voltage Organic Thin Film Transistors via Minimal-solution Bar-coating

Sujin Sung,^{‡a} Won-June Lee,^{‡a} Marcia M. Payne,^b John E. Anthony,^b Chang-Hyun Kim*^c and Myung-Han Yoon*^a

^a School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea

^b Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States of America

^c Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea

* Corresponding author

Prof. Chang-Hyun Kim (chang-hyun.kim@gachon.ac.kr)

Prof. Myung-Han Yoon (mhyoon@gist.ac.kr)

[‡] These authors have contributed equally to this work.

 $Ca = \mu v / \gamma$

Ca : capillary number = ~10⁻³ μ : dynamic viscosity = 2.31 cP (25 °C) v : bar-pulling rate = 0.04 m s⁻¹ γ : surface tension of the solvent = 0.0269 N m⁻¹ (1 cP = 10⁻³ N·s m⁻²)

Figure S1. 2D graph for controllable thickness variation with solution concentration (from 25 to 100 mg ml⁻¹), bar-pulling rate (from 20 to 60 mm s⁻¹), and calculated capillary number from experimentally measured viscosity value for explanation of the increase of film thickness.

Figure S2. Leakage current density (*J*) versus electric field (*E*), capacitance (C_i) versus frequency (*f*), and AFM images of the pristine PVP (left), spin- (center) and bar-coated (right) cPVP films. Scale bars in the AFM images: 1 μ m.

	150 °C	200 °C	250 °C
cPVP			
PVP only			

Figure S3. Photographs that visualize the effect of cross-linker and annealing temperature on the chemical resistance of PVP. For each film, the right-hand side was immersed in the mother solvent (PGMEA). The cPVP films were made of PVP:HDA = 10:1 in weight.

Figure S4. AFM topography of a fully cross-linked polymer film treated by various organic solvents (scale bars: $1 \mu m$). Note that the roughness of bare cPVP remains practically unchanged upon solvent treatment.

Figure S5. Gate-voltage dependent mobility extracted in the saturation regime of the diF-TES-ADT OTFT.

Figure S6. Transfer characteristics of 14 OTFT devices using diF-TES-ADT semiconductor and c-PVP dielectric which were prepared at the same bar-coating condition.