Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Impact of *p*-type doping on charge transport in blade-coated small-molecule/polymer blend transistors

Aniruddha Basu^a*, Muhammad Rizwan Niazi^a, Alberto D. Scaccabarozzi^a, Hendrik Faber^a, Zuping Fei^b, Dalaver H Anjum^c, Alexandra F. Paterson^a, Olga Boltalina^d, Martin Heeney^e, Thomas D. Anthopoulos^a*

Figure S1. Schematic depiction of the blade-coating process. *Step 1* – Heating the substrate to 70 °C; *Step 2* – application of the blend solution on the substrate; *Step 3* – Blade-coating at 50 mms⁻¹ speed while the substrate temperature is maintained at 70 °C; *Step 4* – Cooling the coated film by quenching the substrate to room temperature; *Step 5* – Annealing the solid film at 120 °C for 1 min then quenching back to room temperature.

Figure S2. Output characteristics of spin-coated and blade-coated blend OTFTs.

Figure S3. Histogram of calculated μ_{SAT} for the spin-coated and blade-coated blend OTFTs.

Figure S4. Workfunction (WF) measured via Kelvin Probe for the pristine and $C_{60}F_{48}$ -doped C_{8} -BTBT: C_{16} IDT-BT blend films at different dopant concentrations.

Figure S5. (a) AFM topography images of C_8 -BTBT: C_{16} IDT-BT blend layers with 0.1, 2 and 4.25 mol% $C_{60}F_{48}$. (b) Surface height distribution profiles extracted from the AFM topography images for all $C_{60}F_{48}$ concentrations studied. (c) Mean height distribution profile with respect to the scan area of the AFM topography images for the various $C_{60}F_{48}$ concentrations. (d) RMS of surface roughness of blend films as a function of $C_{60}F_{48}$ concentrations.

Figure S6. (a) Zoomed 2D GIWAXS patterns, and (b) Integrated intensity vs q (nm⁻¹) plots for out-of-plane Bragg sheets for blend films with different doping concentrations. (c) Plot of the FWHM of the (001) peak in (b) *vs*. $C_{60}F_{48}$ concentration.

Figure S7. Transfer characteristics of the devices with different dopant concentrations.

Figure S8. Photographs showing arrays of the spin-coated (a) and a blade-coated (b) C_8 -BTBT:C₁₆IDT-BT:C₆₀F₄₈ based OTFTs. (c) Schematic layout of the source-drain electrodes distributed across the substrate. The channel length (L) and width (W) dimensions in (c) are in μ m.

Table S1. Typical values of ON channel current (I_{on}), ON/OFF channel current ratio ($I_{on/off}$), and threshold voltage (V_{TH}), measured for the different types of C₈-BTBT:C₁₆IDT-BT based OTFTs studied here.

Device type	I _{on} (µA)	$\mathbf{I_{on/off}}$	V _{TH} (V)
Spin-coated	43.29	4.1×10 ⁵	37.89
Blade-coated (pristine)	247.73	4.7×10 ⁵	23.24
Blade-coated			
(<i>p</i> -doped with 0.75	422.31	1.47×10^{4}	24.39
$mol\% C_{60}F_{48})$			