4-Miktoarm Star Architecture Induces PVDF β-phase formation in (PVDF)₂-b-(PEO)₂ Miktoarm Star Copolymers

Nicolás María[†], Jon Maiz^{†,‡, ∥*}, Valentin Rodionov[±], Nikos Hadjichristidis[#], Alejandro J. Müller^{†, ∥*}

[†]POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, Donostia-San Sebastián, Spain

[‡]Centro de Física de Materiales (CFM) (CSIC–UPV/EHU) – Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain

IKERBASQUE - Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain

[±]Department of Macromolecular Science and Engineering Case Western Reserve University, 2100 Adelbert Rd, Cleveland, OH 44106, USA

*Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

***Corresponding authors:** jon.maizs@ehu.eus; alejandrojesus.muller@ehu.es

Figure S1. Lorentz-corrected SAXS patterns for neat PVDF and (PVDF₂₉-N₃)₂ sample.

The average lamellar thickness (lc) can be estimated by SAXS, as follows:

$$l_c = d^* x_v \tag{SI1}$$

In Eq. (S11), x_v is the crystalline volume fraction, which can be calculated using the relevant densities. In our case, the densities are not available, so we made a rough approximation and employed the weight fraction directly (*i.e.*, X_c), obtained by DSC (see Table S1) according to:

$$l_c = d^* X_c \tag{SI2}$$

The final values obtained for l_c from the SAXS patterns by Eq. (SI2) are listed in Table S1 for the neat PVDF and (PVDF₂₉-N₃)₂ sample.

Table S1: Comparison between DSC parameters related to the enthalpy (ΔH_m) , crystallinity (X_c) , and the SAXS parameters related to the long period (d^*) values and average lamellar thicknesses (lc) obtained for the studied PVDF samples.

	DSC		SAXS	
	$\Delta H_m (J/g)$	X_{c} (%)	<i>d</i> * (nm)	<i>l</i> (nm)
Neat PVDF	42.5	39.9	11.2	4.5
(PVDF ₂₉ -N ₃) ₂	56.8	53.3	11.2	6.0

Figure S2. Evolution of the peak at 14.1 nm⁻¹, between 140-170°C, during the heating in WAXS diffraction of the (PVDF₂₉-N₃)₂ when the crystallization rate is 20°C/min.

Figure S3. Evolution of the intensity of the peak at 14.1 nm⁻¹ and the tail of this peak at 14.3 nm⁻¹ during the heating in the WAXS analysis of the $(PVDF_{29}-N_3)_2$ when the sample is cooled down at 20°C/min.