Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting information

Selection of the room temperature enantiotropic polymorphs of diF-TES-ADT in solution sheared thin film transistors

Tommaso Salzillo^{a,b}, Nieves Montes^a, Raphael Pfattner^a, Marta Mas-Torrent^{a,*}

^aDepartment of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain ^bUniversidad Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain

Table S1. Thickness of the diF-TES-ADT:PS films prepared by BAMS at different coating speeds.

Shearing speed	0.1 mm/s	1 mm/s	10 mm/s	15 mm/s	20 mm/s
Thickness	168±23 nm	84±26 nm	21±10 nm	54±37 nm	63±25 nm

Figure S1. (a) Complete powder XRD spectra as predicted from the reported structures of both diF-TES ADT polymorphs published by Jurchescu et al. Phys. Rev., 2009, *80*, 085201. The most intense reflections are indicated. (b) Complete XRD spectrum of diF-TES-ADT:PS film obtained at 10 mm/s shearing speed. Only (00I) reflections are appreciable.

Figure S2. Deconvolution of the (001) peak for a representative sample of diF-TES-ADT sheared at 10 mm/s.

Figure S3. a) Transfer characteristics of representative OFET devices with channel length parallel (a) and perpendicular (b) with respect to the solution shearing direction, fabricated at 0.1 mm/s. Corresponding output characteristics for the parallel (c) and perpendicular (d) devices.

Figure S4. Output characteristics of representative OFET devices with channel length parallel (a) and perpendicular (b) with respect to the solution shearing direction, fabricated at 1 mm/s.