Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Prato Reaction Derived Polythiophene/C₆₀ Donor-Acceptor Double Cable Polymer, Fabrication of Photodetectors and Evaluation of Photocurrent Generation

Sunniya Iftikhar, a Nauman Zafar Butt, b Raja Shahid Ashraf, c Basit Yameen*a

c) Department of Chemistry, Government College University (GCU), Lahore-54000, Pakistan.

*Corresponding author: <u>basit.yameen@lums.edu.pk</u>

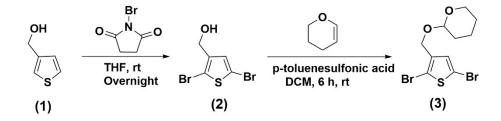
CONTENTS

1.	Synthetic procedures	S1
2.	List of Schemes	S2
z	List of figures	53
э.		

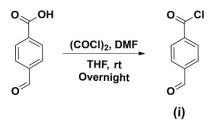
a) Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore-54792, Pakistan.

b) Department of Electrical Engineering, Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore-54792, Pakistan.

1. Synthetic Procedures

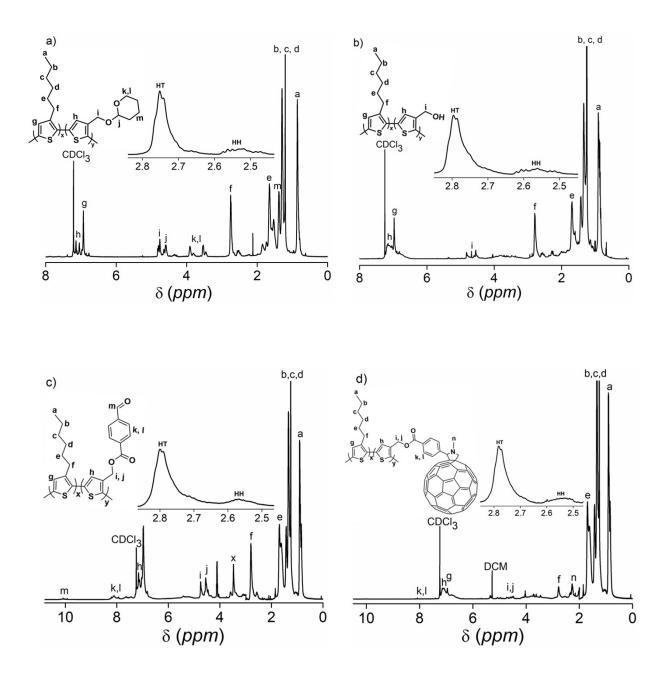

Synthesis of 2-((2,5-dibromothiophen-3-yl)methoxy)tetrahydro-2H-pyran 3:

2,5-dibromo-3-tetrahydropyranoxymethylthiophene 3 was synthesized by literature reported method (Scheme S1).¹

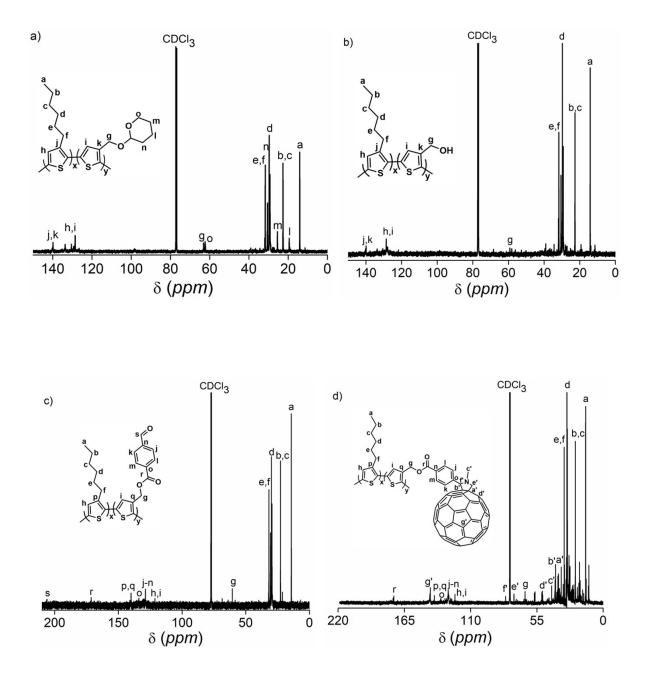

Synthesis of 4-formylbenzyol chloride (i)

0.25 g (1.7 mmol) of 4-formylbenzoic acid was dissolved in 10 mL of anhydrous THF under inert conditions. The catalytic amount (2-3 drops) of anhydrous DMF was added in the mixture. The reaction mixture was placed on the ice bath and then dropwise added 419 μ L (4.2 mmol) of oxalyl chloride under inert and ice-cold conditions. The ice bath was removed after 30 minutes and the reaction mixture was stirred overnight at room temperature. The solvent was removed via a rotary evaporator to get concentrated product which was dried under vacuum at room temperature (Scheme S2).²

2. Schemes



Scheme S1. Synthetic route of 2,5-dibromo-3-tetrahydropyranoxymethylthiophene 3



Scheme S2. Synthesis of 4-formylbenzoyl chloride (i) from 4-formylbenzoic acid

3. Figures

Figure S1. ¹H-NMR spectra and regioregularity analysis (a) copolymer **4** with pendant THP ether groups, (b) copolymer **5** with pendant hydroxyl groups, (c) copolymer **6** with pendant aldehyde groups and (d) copolymer **7** covalent hybrid with C_{60}

Figure S2. ¹³C-NMR spectra of (a) copolymer **4** with pendant THP ether groups, (b) copolymer **5** with pendant hydroxyl groups, (c) copolymer **6** with pendant aldehyde groups and (d) copolymer **7**, which is a covalent hybrid of copolymer **6** and C_{60}

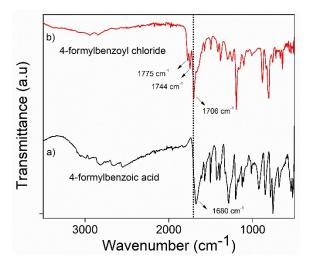


Figure S3. FTIR spectra (a) 4-formylbenzoic acid (b) 4-formylbenzoyl chloride (i)

Gel Permeation Chromatography (GPC)

Gel permeation chromatography (GPC) measurements were carried out by using THF as an eluent with flow rate of 1mL /min at 35 °C. The GPC profile of statistical random copolymer **4** and copolymer **5** is shown in Figure S4 which clearly depicted the synthesis of copolymer **4** (M_n 12300 Da and D: 1.1) by Grignard metathesis (GRIM) polymerization.

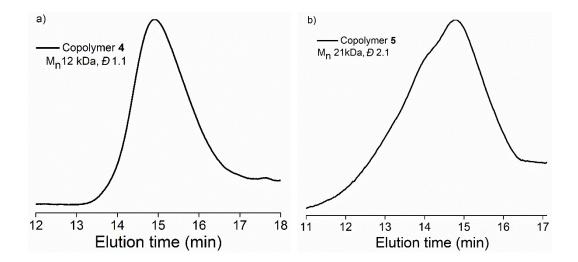


Figure S4. GPC profile of copolymer synthesized by Grignard metathesis (GRIM) polymerization (a) copolymer 4 (b) copolymer 5

References

- B. A. Hammer, F. A. Bokel, R. C. Hayward, T. Emrick, *Chem. Mater.*, 2011, 23, 4250-4256.
 T. Uchida, Y. Kagoshima, T. Konosu, *Bioorg. Med. Chem. Lett.*, 2009, 19, 2013-2017.