Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

## **Supporting Information**

## **Exploiting Two-Dimensional Hybrid Perovskites Incorporating Secondary Amine for High-Performance Array Photodetection**

Tao Yang,<sup>ab</sup> Yaobin Li,<sup>a</sup> Shiguo Han,<sup>a</sup> Yi Liu,<sup>a</sup> Zhiyun Xu,<sup>a</sup> Maofan Li,<sup>ab</sup>, Jiaqi Wang,<sup>a</sup> Yu Ma,<sup>a</sup> Junhua Luo<sup>a</sup> and Zhihua Sun\*<sup>a</sup>

<sup>a</sup>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

E-mail: sunzhihua@fjirsm.ac.cn.

<sup>b</sup>College of Physics, Qingdao University, Qingdao 266071, P. R. China.



Figure S1. Experimental and calculated powder X-ray diffraction patterns of 1 at room temperature.



Figure S2. Surface morphology measured by AFM.



**Figure S3.** Powder X-ray diffraction patterns of **1** recorded on the sample after 1 day and 100 days, respectively.

| Empirical formula                   | $C_{11}H_{33}I_7N_4Pb_2$                              |
|-------------------------------------|-------------------------------------------------------|
| Temperature/K                       | 200.00                                                |
| Crystal system                      | Monoclinic                                            |
| Space group                         | $P2_{1}/c$                                            |
| a/Å                                 | 20.857(2)                                             |
| b/Å                                 | 9.1020(7)                                             |
| c/Å                                 | 8.7015(8)                                             |
| α/°                                 | 90                                                    |
| β/°                                 | 97.683(9)                                             |
| $\gamma/^{\circ}$                   | 90                                                    |
| Volume/Å <sup>3</sup>               | 1637.1(3)                                             |
| Z                                   | 2                                                     |
| <i>F</i> (000)                      | 1328.0                                                |
| Index ranges                        | $-26 \le h \le 28, -12 \le k \le 8, -10 \le l \le 11$ |
| Independent reflections             | 3985 [ $R_{int} = 0.0671$ , $R_{sigma} = 0.0671$ ]    |
| Final R indexes [I>= $2\sigma$ (I)] | $R_1 = 0.0972, wR_2 = 0.2032$                         |
| Final R indexes [all data]          | $R_1 = 0.1253, wR_2 = 0.2163$                         |

Table S1. Crystal data and structure refinement for 1.

Table S2. Bond Lengths for 1.

| Atom | Atom               | Length/Å   | Atom | Atom | Length/Å  |
|------|--------------------|------------|------|------|-----------|
| IO   | Pb01               | 3.053(5)   | C1A  | N3   | 1.49(2)   |
| Pb01 | I1                 | 3.049(6)   | N1   | C40  | 1.34(2)   |
| Pb01 | I002 <sup>1#</sup> | 3.1904(19) | C1B  | C2   | 1.40(7)   |
| Pb01 | I002               | 3.2050(19) | C1B  | N3   | 1.39(7)   |
| Pb01 | 1003               | 3.170(2)   | N2   | C40  | 1.34(2)   |
| Pb01 | I003 <sup>2#</sup> | 3.156(2)   | C2   | C3   | 1.495(18) |
| Pb01 | 1005               | 3.3587(10) | C3   | C4   | 1.496(19) |
| C1A  | C2                 | 1.50(2)    | C4   | C5B  | 1.49(5)   |

<sup>1#</sup>+X,1/2-Y,1/2+Z; <sup>2#</sup>+X,3/2-Y,1/2+Z

## Table S3. Bond Angles for 1.

| Atom | Atom | Atom               | Angle/°  | Atom               | Atom | Atom | Angle/°   |
|------|------|--------------------|----------|--------------------|------|------|-----------|
| I0   | Pb01 | I002               | 84.6(3)  | I003 <sup>1#</sup> | Pb01 | I002 | 177.69(8) |
| IO   | Pb01 | I003 <sup>1#</sup> | 93.5(3)  | $I003^{1#}$        | Pb01 | I003 | 86.91(2)  |
| IO   | Pb01 | I003               | 83.8(3)  | $I003^{1#}$        | Pb01 | I005 | 83.28(6)  |
| IO   | Pb01 | I005               | 166.6(2) | I003               | Pb01 | 1005 | 83.03(6)  |
| I1   | Pb01 | I002               | 93.6(3)  | N3                 | C1A  | C2   | 115(3)    |
| I1   | Pb01 | $I002^{2\#}$       | 84.6(3)  | N3                 | C1B  | C2   | 129(6)    |

| I1           | Pb01 | I003 <sup>1#</sup> | 84.3(3)   | C1B                | C2   | C3                 | 123(4)     |
|--------------|------|--------------------|-----------|--------------------|------|--------------------|------------|
| I1           | Pb01 | I003               | 93.2(4)   | C3                 | C2   | C1A                | 115(3)     |
| I1           | Pb01 | I005               | 167.2(2)  | Pb01 <sup>3#</sup> | I002 | Pb01               | 161.65(9)  |
| $I002^{2\#}$ | Pb01 | I002               | 85.74(2)  | $Pb01^{4\#}$       | I003 | Pb01               | 166.00(12) |
| $I002^{2\#}$ | Pb01 | I005               | 99.18(5)  | C2                 | C3   | C4                 | 117(3)     |
| I002         | Pb01 | I005               | 98.86(5)  | C5B                | C4   | C3                 | 114(3)     |
| $I003^{1\#}$ | Pb01 | I002 <sup>2#</sup> | 93.08(6)  | Pb01               | I005 | Pb01 <sup>5#</sup> | 180.0      |
| I003         | Pb01 | I002               | 94.20(6)  | N2                 | C40  | N1                 | 118(3)     |
| I003         | Pb01 | I002 <sup>2#</sup> | 177.77(8) |                    |      |                    |            |

<sup>1#</sup>+X,3/2-Y,1/2+Z; <sup>2#</sup>+X,1/2-Y,1/2+Z; <sup>3#</sup>+X,1/2-Y,-1/2+Z; <sup>4#</sup>+X,3/2-Y,-1/2+Z; <sup>5#</sup>1-X,1-Y,1-Z

 Table S4. N-H…I hydrogen bonds of 1.

| D-H                               | d(D-H) | d(HA) | <dha< th=""><th>d(DA)</th><th>А</th></dha<> | d(DA) | А                                     |
|-----------------------------------|--------|-------|---------------------------------------------|-------|---------------------------------------|
| N2-H2BD <sup>b</sup>              | 0.890  | 2.992 | 157.45                                      | 3.829 | I2 [ x, -y+1/2, z-1/2 ]               |
| N2-H2BE <sup>b</sup>              | 0.890  | 2.960 | 136.70                                      | 3.659 | I4Bb [ x, -y+3/2, z-1/2 ]             |
| N2-H2BE <sup>b</sup>              | 0.890  | 3.159 | 134.64                                      | 3.837 | I3 [ x, -y+3/2, z-1/2 ]               |
| N2-H2BF <sup>b</sup>              | 0.890  | 3.145 | 163.79                                      | 4.008 | I4B <sup>b</sup>                      |
| N2-H2AA <sup>a</sup>              | 0.890  | 2.890 | 145.29                                      | 3.657 | I4A <sup>a</sup> [ x, -y+3/2, z-1/2 ] |
| N2-H2AA <sup>a</sup>              | 0.890  | 3.305 | 120.72                                      | 3.837 | I3 [ x, -y+3/2, z-1/2 ]               |
| N2-H2AB <sup>a</sup>              | 0.890  | 3.120 | 132.63                                      | 3.780 | I2                                    |
| N2-H2AB <sup>a</sup>              | 0.890  | 3.197 | 125.15                                      | 3.780 | 13                                    |
| N2-H2AC <sup>a</sup>              | 0.890  | 2.957 | 167.04                                      | 3.829 | I2 [ x, -y+1/2, z-1/2 ]               |
| N1 <sup>a</sup> -H1D <sup>a</sup> | 0.890  | 2.992 | 153.91                                      | 3.811 | I3 [ -x+1, y-1/2, -z+1/2 ]            |
| N1 <sup>a</sup> -H1E <sup>a</sup> | 0.890  | 3.080 | 138.99                                      | 3.797 | I3 [ -x+1, -y+1, -z ]                 |