Supporting Information

Charge Generation Mechanism Tuned via Film Morphology in Small Molecule Bulk-Heterojunction Photovoltaic Materials

Sylvia J. Lou,¹ Stephen Loser,¹ Kyle A. Luck,¹ Nanjia Zhou,¹ Matthew J. Leonardi,¹ Amod Timalsina,¹ Eric F. Manley,¹ Dugan Hayes,² Joseph Strzalka,³ Mark C. Hersam,^{1,4} Robert P.H. Chang,⁴ Tobin J. Marks^{1*}, Lin X. Chen^{1,2*}

¹Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA ²Chemical Science and Engineering Division, ³X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA ⁴Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA *1. Grazing incidence x-ray scattering*

Figure S1. A) In-plane and B) out of plane scattering of neat and NDT+40%PCBM ratios unannealed or annealed at 150°C.

Figure S2. A) Out-of-plane and B) in-plane scattering of NDT with PCBM loadings not shown in the main text (0.1%, 1%, 30%, 60%) to demonstrate similarities in trends.

Peak	%PCBM	<i>d</i> -spacing (Å) CCL (Å)		
	NDT neat an	15.2	194.3	
	NDT neat no an	16.2	109.2	
	10%	15.1	166.8	
	20%	16.0	174.5	
(010)	30%	15.2	169.0	
side-on and end-on	40%	15.1	183.7	
	40% no an	15.5	82.8	
	50% 15.2		167.9	
	60%	15.9	151.0	
	80%	16.1	168.7	
	NDT an	7.3	36.20	
	NDT no an	6.9	155.49	
(02-1) end-on	10% 7.4		33.09	
	20% 7.5		136.05	
	30%			
	40%	7.2	494.84	
	50%	7.4	192.96	
(02.2)	NDT an	5.8	44.68	
(02-2)	10% 6.0		60.40	
end-on	20%	5.9	46.14	
(1-2-1)/(112)	NDT an	4.9	37.02	
side-on	10%	4.8	24.81	
	NDT an	4.2	63.29	
	NDT no an	4.2	118.76	
	10%	4.1	73.61	
(022)	20%	4.2	169.36	
(USS) end-on_side-on	30%	30% 4.2 112		
Chu-01, Sluc-011	40% 4.1 159		159.46	
	50%	50% 4.1		
	60%	4.2	190.93	
	80%	4.2	202.30	

Table S1. Peak d-spacing and crystalline correlation lengths for in-plane diffraction peaks in the NDT crystal structure at varying loadings of PCBM and corresponding crystalline orientations.

(1-2-4) side-on	NDT an	3.8	53.91
	NDT no an	3.8	42.06
	10%	3.8	61.68
	20%	3.9	63.62
	30%	3.8	82.04
	40%	3.8	83.67
	50%	3.8	41.50
	60%	3.8	106.35
	80%	3.9	71.49

Peak	%PCBM	d-spacing (Å)	CCL (Å)
	NDT an	15.6	211.96
	NDT no an	16.3	100.28
	10%	15.6	211.44
	20%	15.6	143.38
(001)	30%	15.7	194.24
side-on and end-on	40%	15.6	160.98
	40% no an	15.6	49.94
	50%	15.7	152.78
	60%	16.4	132.74
	80%	16.7	117.83
	NDT an	7.8	177.20
(01-2)	NDT no an	7.9	46.00
side-on	10%	10% 7.8 2	
	20%	8.1	228.21
	NDT an	7.0	58.67
	10%	7.1	35.30
	20%	7.1	70.56
(02-1) side-on	30% 7.1		144.61
3100-011	40% 7.0		118.00
	50%	7.1	176.44
	60%	6.9	161.68
	NDT an	5.0	36.48
	NDT no an	5.2	47.06
(1-1-2) end_on	10%	5.1	42.35
end-on	20%	20% 4.9 5	
	30%	30% 4.8	
	NDT an	4.8	81.59
	NDT noan	4.7	157.36
(023)	10%	4.8	58.28
end-on	20%	20% 4.7 16.9	
	30% 4.8 35		35.62
	40%	4.8	104.85

Table S2. Peak d-spacing and crystalline correlation lengths for in-plane diffraction peaks in the NDT crystal structure at varying loadings of PCBM and corresponding crystalline orientations.

Figure S3. UV-Vis absorption of NDT in CHCl3 solution (top) and NDT:PCBM films with varying PCBM loadings (bottom). The top figure is extracted from a previous publication¹ with NDT (red curve) among other spectra.

3. Transient absorption spectroscopy

Figure S4. TA spectra of NDT in CHCl₃. Top: Two dimensional full TA contour with probe wavelength and delay time; Bottom: TA absorption in NIR region at different delays from 0 - 3 ns extracted from the top contour map.

Figure S5. TA spectra of NDT in the 0-3 ns pump-probe delay time window. Top: Neat NDT film, and Bottom: BHJ film with $40\% PC_{61}BM$ loading.

% PCBM	t ₁ (ps)	t ₂ (ps)	t ₃ (ps)	A ₁ (x10 ⁻⁴)	A ₂ (x10 ⁻⁴)	A ₃ (x10 ⁻⁴)
0	7.1 (0.3)	105.6 (4.6)	>3000	6.8 (0.2)	7.5 (0.2)	2.1 (0.1)
0*	2.5 (0.1)	54.1 (2.3)	1829 (303)	20 (0.6)	18 (0.4)	0.2 (0.2)
0.1	6.2 (1.1)	58.6 (11.3)		7.3 (0.7)	4.7 (0.7)	
1	6.0 (0.4)	88.0 (4.7)		7.8 (0.2)	5.5 (0.2)	
10	7.8 (0.4)	91.2 (5.4)	2240 (145)	5.5 (0.2)	6.4 (0.2)	2.4 (0.1)
20	6.1 (0.6)	82.2 (7.8)	2365 (237)	7.6 (0.5)	8.1 (0.4)	2.7 (0.2)
30	8.6 (0.5)	102.7 (5.5)	>3000	11 (0.3)	10 (0.3)	4.0 (0.1)
40	6.9 (0.2)	96.3 (4.3)	2240 (111)	5.5 (0.1)	5.1 (0.1)	1.4 (0.1)
40*	4.9 (0.2)	75.9 (5.1)	>3000	15 (0.3)	8.3 (0.3)	4.4 (0.2)
50	10.9 (0.9)	162.6 (22.6)	>3000	12 (0.4)	5.5 (0.4)	2.1 (0.1)
60	8.7 (0.8)	124.6 (14.6)	>3000	8.5 (0.3)	5.1 (0.3)	2.2 (0.1)
80	5.8 (0.4)	85.6 (7.5)	>3000	7.2 (0.3)	7.0 (0.3)	2.1 (0.1)

Table S3. EX state decay dynamics for all NDT+PCBM films from transient absorption. *unannealed films

(1) Loser, S.; Lou, S. J.; Savoie, B. M.; Bruns, C. J.; Timalsina, A.; Leonardi, M. J.; Smith, J.; Harschneck, T.; Turrisi, R.; Zhou, N.; Stern, C. L.; Sarjeant, A. A.; Facchetti, A.; Chang, R. P. H.; Stupp, S. I.; Ratner, M. A.; Chen, L. X.; Marks, T. J. Systematic evaluation of structure-property relationships in heteroacene - diketopyrrolopyrrole molecular donors for organic solar cells. *Journal of Materials Chemistry A* **2017**, *5*, 9217-9232.