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Section S1: The UV—vis absorption spectra of different tungsten carbide chips
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Fig. S1 The UV—vis absorption spectra of different tungsten carbide chips (inset: SEM images).

Tungsten carbide chips (the absorption peak concerted in 463 nm) were prepared on Si(100)
wafer in argon (15 sccm) using a direction current magnetron co-sputtering system. The powers
of tungsten and graphite target were 30 W and 70 W, respectively. The sputtered time was 500 s

with a pressure of 1.69 Pa. The sputtered temperature was room temperature.
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Section S2: The Raman spectrum of tungsten carbide chips
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Fig. S2 The Raman spectrum of tungsten carbide chips.
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Section S3: Preparation and characterizations of the Ag chips

Silver chips were prepared on Si(100) wafer in a argon (40 sccm) atmosphere using a
direction current magnetron system at room temperature. A high purity silver plate (99.99%,
50mm-diameter) was used as a target. The power of silver was 60 W and the sputtered time is

1200 s with a pressure of 2.21 Pa.

Fig. S3 (a) Low- and (b) high-magnification SEM image of Ag chip.
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Section S4: Calculation of the enhancement factor (EF)

The EF of the sample could be estimated using the equation below:

EF = ( Lsgrs/Nsers) | (Lpuir/Npwir) (1)
N, SERS — CVN, AARaman/ ASub (2)
Nbulk = phARamanNA/M (3)

Isgrs and I, are the intensities of the selected Raman peak in the SERS and non-SERS spectra,
respectively. Nggrs and Ny, are the average number of molecules in scattering area for SERS and
non-SERS measurement. The data of bulk R6G is used as non-SERS-active reference. C is the
molar concentration of R6G solution and V' is the volume of the droplet (20 uL). N, is Avogadro
constant. Ag,.., 1S the laser spot area. Ag, is the effective area of the substrate, which is
approximately 9 mmm?. The confocal depth /4 of the laser beam is 21 pm. The molecular weight

M of R6G is 479 g mol'! and density p of bulk R6G is 1.15 g cm?3.
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Section S5: Simulation of the electromagnetic field distribution

The finite element method (FEM) simulations are carried out on COMSOL. Plasmonic modes
are excited by a plane wave source with incident direction perpendicular to the plane of structure.
The incident light wavelength is 532 nm, and its electric field intensity is 1 V/m. The scattering
boundary conditions are applied to the model. The dielectric constants of tungsten carbide are set
as €' =-5.55 and ¢"” =15.60. From the SEM image (see Fig. 1(a)), it can be seen that the particles
with the size between 20 and 40 nm are randomly distributed on the sample surface, which gives
rise to the uncertain grain spacing. Therefore, we simulated the electromagnetic field distribution
with the gap value of particles from 1 to 10 nm, respectively. When the gap value of particles is
reduced from 10 to 1 nm, the maximum local electromagnetic field enhancement factor (EEF)
increases from 16 to 62. The theoretical Raman enhancement factor (EF) has been described by
the following expression:

EF= (|Ejoc(@0)[* /|E(00)?)*(|Eroc(@r)[* /|E(@r)]?) “
where Ej.(mo) is the enhanced local electric field at the incident frequency (wo), E(wo) is the
incident electric field at the incident frequency (), Ejoc(®R) is the enhanced local electric field at
the Raman scattered frequency (wg), and E(wg) is the incident electric field at Raman scattered
frequency (wg). For the low-frequency vibrational modes of adsorbed molecules, the incident
frequency can be considered roughly equal to the Raman scattered frequency. Therefore, The
Raman enhancement factor is approximately proportional to the fourth power of the EEF. When
the gap size of particles is 1, 2, 3, 5, 7 and 10 nm, the maximum Raman EF is 1.48x107, 2.09%10°,
1.05x10°, 4.57x10°, 1.05%10° and 6.55x10% respectively. Because of the randomly distributed
gap values, the Raman EF obtained from experiments is an averaged value (~ 2.31x10°). It is
between the highest and lowest simulated results from Table S1, indicating the coincidence

between experiments and simulations.
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Fig. S4 The electromagnetic field distribution of tungsten carbide chips, the gap value of particles

is(a) 1, (b)2,(c)3,(d) 5, (e) 7, and (f) 10 nm.

Table S1 Maximum local electromagnetic field enhancement factor and Raman enhancement
factor calculated from the simulation of electromagnetic field distribution.

Gap value of the particles Maximum EEF Maximum Raman EF
1 nm 62 1.48x107
2 nm 38 2.09x106
3 nm 32 1.05x10°
5 nm 26 4.57x10°
7 nm 18 1.05x10°
10 nm 16 6.55x10%
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Section S6: Raman spectra of other organic compounds adsorbed on tungsten

carbide chips.
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Fig. S5 Raman spectra of (a) 4-nitrothiophenol (4-NTP), (b) 4-mercaptobenzoic acid (4-MBA),
(c) fuchsin acid (FA), and (d) Sudan III adsorbed on tungsten carbide chips.
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Section S7: The height profile of metal carbide chips
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Fig. S6 The height profile of MoC; films.
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Fig. S7 The height profile of TiCy films.
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Fig. S8 The height profile of NbC; films.
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Section S8: The XRD patterns of metal carbide chips
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Fig. S9 The XRD patterns of MoC,, NbC;, and TiC, chips.
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Section S9: The XPS spectra of metal carbide chips
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Fig. S10 The Mo 3d XPS spectrum of MoC; chips.

—Ti*

—Ti*
—Ti*

Intensity (a.u.)

468 465 462 459 456 453
Binding Enery (eV)
Fig. S11 The Ti 2p XPS spectrum of TiCy chips.
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Fig. S12 The Nb 3d XPS spectrum of NbC chips.
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Table S2 The atomic percentage of metal carbide chips by the XPS spectra.

Metal carbides Valence state Atomic percentage (%)
W2+ 41.1
WCy W4 47.5
Wo* 11.4
Mo3* 19.2
MoCy
Mo** 80.8
Ti** 29.2
TiCy Ti3* 48.5
Ti** 22.3
NbZ* 41.1
NbCy Nb** 47.5
Nb** 11.4
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Section S10: Price comparison of different targets

Table S3 Price comparison of different targets.

Targets (50 mm-diameter and 3 mm-

thickness) Price (yuan/per plate)

Au 40950

Ag 600

W 400
Mo 300

Ti 200

Nb 400

C 400
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Section S11: Raman spectra of R6G adsorbed on original and high

temperature treated metal carbide chips
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Fig. S13 Raman spectra of R6G adsorbed on original and high temperature treated MoC, chips.
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Fig. S14 Raman spectra of R6G adsorbed on original and high temperature treated TiC, chips.
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Fig. S15 Raman spectra of R6G adsorbed on original and high temperature treated NbC, chips.
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Section S12: Raman spectra of R6G adsorbed on original and SiO, coated

metal carbide chips
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Fig. S16 Raman spectra of R6G adsorbed on original and SiO, coated MoCy chips.
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Fig. S17 Raman spectra of R6G adsorbed on original and SiO, coated TiCy chips.
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Fig. S18 Raman spectra of R6G adsorbed on original and SiO, coated NbCy chips.
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