Supporting Information for

Enhancing Optical Functionality by co-Loading NaYF₄:Yb,Er and CdSe QDs in a Single Core-shell Nanocapsule

Magda A. Antoniak¹, Urszula Bazylińska², Dominika Wawrzyńczyk¹, Maciej Ćwierzona³, Sebastian Maćkowski³, Dawid Piątkowski³, Julita Kulbacka⁴, Marcin Nyk^{1*}

¹Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

²Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

³Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland

⁴Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Wrocław, 50-556, Poland

*Corresponding author.

E-mail address: marcin.nyk@pwr.edu.pl

Fig. S1. Representative transmission electron microscope image (a) and energy-dispersive X-ray (EDX) spectra (b) (the inset figure shows TEM image) of the as-prepared NaYF₄:Yb,Er NPs before encapsulation.

Fig. S2. Experimental X-ray diffraction pattern of α -NaYF₄:20%Yb,2%Er NPs before encapsulation (black line) and the JCPDS standard no. 77-2042 for cubic α -NaYF₄ (red line). Peak at 50° is from glass sample holder.

Fig. S3. Representative transmission electron microscope image of the as-prepared CdSe QDs.

Fig. S4. Representative transmission electron microscope images of the NaYF₄:Yb,Er/CdSe NCs.

Fig. S5. Representative transmission electron microscope image (a) and energy-dispersive X-ray (EDX) spectra (b) (the inset figure shows TEM image) of the NaYF₄:Yb,Er NCs.

Fig. S6. Photoluminescence intensity maps observed at 540 nm (a, c) and 650 nm (b, d), upconverted emission spectra (e) of individual $NaYF_4$:Yb,Er nanocapsules (dispersed in distilled water) upon excitation with 980 nm CW laser diode. On (c, d) pictures are shown photoluminescence intensity maps nanocapsule labelled as number 2.

Fig. S7. Photoluminescence intensity maps observed at 540 nm (a, c) and 650 nm (b, d), upconverted emission spectra (e) of individual NaYF₄:Yb,Er/CdSe co-loaded nanocapsules (dispersed in distilled water) upon excitation with 980 nm CW laser diode. On (c, d) pictures are shown photoluminescence intensity maps nanocapsule labeled as number 2.

Fig. S8. Room temperature fluorescence intensity decays of ${}^{2}H_{11/2}/{}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ (a) and ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ (b) electronic transition for NaYF₄:Yb,Er NCs dispersed in distilled water upon excitation with 980 nm laser diode.

Fig. S9. Room temperature fluorescence intensity decays of ${}^{2}H_{11/2}/{}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ (a) and ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ (b) electronic transition for NaYF₄:Yb,Er/CdSe NCs dispersed in distilled water upon excitation with 980 nm laser diode.

Fig. S10. Room temperature fluorescence intensity decays of the as-prepared CdSe QDs (dispersed in chloroform) and the NaYF₄:Yb,Er/CdSe co-loaded NCs (dispersed in distilled water) measured with TCSPC method and 375 nm laser diode excitation.