Supporting Information

Wafer-scale metal chalcogenide thin films via ion exchange

approach

Huihui Chen¹, Chuanbao Cao^{1*}, Binghui Ge^{2*}, Yongkai Li³, Junfeng Han³ and Zhuo Chen^{1*}

¹Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China

²Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China

³Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China

Further results

Table 1S. synthetic conditions for ion exchange reactions and percentage of chemical

 composition of three metal chalcogenide thin flims after ion exchange reactions.

Thin	Reactants	Temp.(°C)	Time	<u>Cd%</u>	<u>Cu%</u>
<u>films</u>					
<u>CdS</u>	$\underline{Ag_2S}$	<u>50</u>	<u>5h</u>	<u>96.66</u>	
	5mmolCd(NO ₃) ₂				
	<u>0.25mlTBP</u>				
	50ml methanol				

<u>CdSe</u>	<u>Ag₂Se</u>	<u>50</u>	<u>5h</u>	<u>99.34</u>	
	<u>5mmol Cd(NO₃)2</u>				
	<u>0.25ml TBP</u>				
	50ml methanol				
<u>Cu₂S</u>	<u>CdS</u>	<u>30</u>	<u>10min</u>		<u>98.46</u>
	48mg[MeCN] ₄ CuI PF ₆				
	10ml methanol				
<u>Cu₂Se</u>	<u>CdSe</u>	<u>30</u>	<u>10min</u>		<u>97.85</u>
	48mg[MeCN] ₄ CuI PF ₆				
	10ml methanol				

Figure 1S (a) the Ag₂S thin film on SiO₂/Si obtained in the furnace at 200 °C for 2h. (b) the Ag₂S thin film on sapphire obtained in the furnace at 200 °C for 2h. (c) the Ag₂S thin film on SiO₂/Si obtained at room temperature with H₂S as the sulfur source.

Figure 2S (a)the plot about the relation among Ag thin films, as-prepared Ag_2S and CdS. (b) SEM image of CdS when the thickness of silver thin film is less than 10nm

Figure 3S SEM images and EDS mapping of CdS (a), CdSe (b), Cu₂S (c) and Cu₂Se (d) thin film.

Figure 4S The height of as-prepared CdS(a), CdSe(b), $Cu_2S(c)$ and $Cu_2Se(d)$ thin

films on sapphires when applying 17.5nm Ag thin films as precursors.

Table 2S Lattice Parameters and Crystal Structures of substrate and as-prepared thin

Material	Crystal system	Lattice parameter	
Sapphire	Hexagonal	a =4.47 c=13.00	
CdSe	Hexagonal	a=4.29 c=7.010	
Cu ₂ Se	Cubic	a=b=c=5.76	
CdS	Hexagonal	a=4.14 c=6.72	
Cu ₂ S	Hexagonal	a=3.95 c=6.78	
Al O • Sapphire substrate	Cd Se CdSe hcp	Cu Se Cu2Se cubic	
(001) slice	(001) slice	(111) slice	
• • • • • • • • • • • • • • • • • • •	0.429nm • • • • • • • • • • • • • • • • • • •	0.407nm	

Figure 5S 2D unit cells of sapphire (001), CdSe (001) and Cu_2Se (111) slices displaying

the stacking of the crystal structures.

films

Figure 6S (a) The I-V curves of CdS thin film photodetector in dark and illumination condition at room temperature. (b) Responsivity and detectivity versus light intensity with the bias voltage of 10V. Inset: photocurrent as function of illumination power density. (c) Photocurrent response of CdS thin film photodetector upon 241 μ w/cm2 illumination measured for the light-on and light-off conditions with the bias voltage of 10V. (d) A single cycle photocurrent response of CdS thin film photodetector.

Table 3S Room temperature photoelectrical properties of CdS and CdSe films

Sample	R		D*	reference
CdSe thin film	0.486 A/W		5.5*10 ¹¹ Jones	Our work
CdS thin film	0.187 A/W		10 ⁹ Jones	Our work
CdS thin film	0.0629		5*10 ¹¹ Jones	Ref ¹
	A/W(532nm)			
CdSe(mixed with MEH-PPV)	0.2 A/W(514nm)		-	Ref ^{2, 3}
CdSe quantum-dot film	0.068 A	A/W	10 ⁵ Jones	Ref ⁴
CdSe	(560nm)*		>10 ¹³ Jones	Ref ⁵
	7.33 A/W(638nm)			
	8.93 A/W (520nm)			

prepared by different methods.

Table 4S Room temperature electrical properties of Cu₂S and Cu₂Se thin films prepared

by different methods.

Sample	σ	μ	reference
Cu ₂ S in our work	75 S/cm	536.9	Our work
Cu ₂ Se in our work	663 S/cm	$cm^{2}/(V*s)$	Our work
Cu _{1.95} Se	130 S/cm	1411.8	Ref ⁷
Cu _{2-x} S	75 S/cm	$cm^{2/}$ (V*s)	Ref ⁸
Cu ₂ S	127 S/cm	$7.62 \text{ cm}^2/(\text{V*s})$	Ref ⁹
Cu ₂ Se	1168 S/cm	1.12 cm^2 / (V*s	Ref ⁹
Cu _{2-x} Se	890-1380 S/cm	$2.4 \text{ cm}^2/(\text{V*s})$	Ref ¹⁰
Cu ₂ Se	~10 ³ S/cm	$3.9 \text{ cm}^2/(\text{V*s})$	Ref ¹¹
Cu ₂ Se	1.1*10 ³ S/cm		Ref ¹²
		$10.4 \text{ cm}^2/(\text{V*s})$	

Reference:

1. Shkir, M.; Ashraf, I. M.; Chandekar, K. V.; Yahia, I. S.; Khan, A.; Algarni, H.; AlFaify, S., A significant enhancement in visible-light photodetection properties of chemical spray pyrolysis fabricated CdS thin films by novel Eu doping concentrations. *Sensors and Actuators A: Physical* **2020**, *301*.

2. García de Arquer, F. P.; Armin, A.; Meredith, P.; Sargent, E. H., Solutionprocessed semiconductors for next-generation photodetectors. *Nature Reviews Materials* **2017**, *2* (3).

3. Greenham, N. C.; Peng, X.; Alivisatos, A. P., Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. *Phys Rev B Condens Matter* **1996**, *54* (24), 17628-17637.

4. Oertel, D. C.; Bawendi, M. G.; Arango, A. C.; Bulović, V., Photodetectors based on treated CdSe quantum-dot films. *Applied Physics Letters* **2005**, *87* (21).

5. Kwon, S. M.; Won, J. K.; Jo, J. W.; Kim, J.; Kim, H. J.; Kwon, H. I.; Kim, J.; Ahn, S.; Kim, Y. H.; Lee, M. J.; Lee, H. I.; Marks, T. J.; Kim, M. G.; Park, S. K., High-performance and scalable metal-chalcogenide semiconductors and devices via chalco-gel routes. *Sci Adv* **2018**, *4* (4), eaap9104.

6. Zhu, D. D.; Xia, J.; Wang, L.; Li, X. Z.; Tian, L. F.; Meng, X. M., van der Waals epitaxy and photoresponse of two-dimensional CdSe plates. *Nanoscale* **2016**, *8* (22), 11375-9.

7. Ting, C.-C.; Lee, W.-Y., Low-temperature electrophoretic deposition of Cu2-xSe nanoparticles. *physica status solidi (c)* **2012**, *9* (12), 2390-2394.

8. Otelaja, O. O.; Ha, D. H.; Ly, T.; Zhang, H.; Robinson, R. D., Highly conductive Cu2-xS nanoparticle films through room-temperature processing and an order of magnitude enhancement of conductivity via electrophoretic deposition. *ACS applied materials & interfaces* **2014**, *6* (21), 18911-20.

9. Lin, Z.; He, Q.; Yin, A.; Xu, Y.; Wang, C.; Ding, M.; Cheng, H. C.; Papandrea, B.; Huang, Y.; Duan, X., Cosolvent approach for solution-processable electronic thin films. *ACS Nano* **2015**, *9* (4), 4398-405.

10. Ma, Y.; Vartak, P. B.; Nagaraj, P.; Wang, R. Y., Thermoelectric properties of copper chalcogenide alloys deposited via the solution-phase using a thiol–amine solvent mixture. *RSC Advances* **2016**, *6* (102), 99905-99913.

11. Lin, Z.; Hollar, C.; Kang, J. S.; Yin, A.; Wang, Y.; Shiu, H. Y.; Huang, Y.; Hu, Y.; Zhang, Y.; Duan, X., A Solution Processable High-Performance Thermoelectric Copper Selenide Thin Film. *Advanced materials* **2017**, *29* (21).

12. Hu, T.; Yan, Y.; Wang, S.; Su, X.; Liu, W.; Tan, G.; Poudeu-Poudeu, P.; Tang, X., One-step ultra-rapid fabrication and thermoelectric properties of Cu2Se bulk thermoelectric material. *RSC Advances* **2019**, *9* (19), 10508-10519.