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SI Figure 1. XRD patterns collected for Zn-doped tetrahedrite samples synthesized at different 

reaction temperatures. Reference patterns provided for tetrahedrite (Cu12Sb4S13), famatinite 

(Cu3SbS4), digenite (Cu1.8S), valentinite (Sb2O3), and covellite (CuS). 
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Table S1 provides the lattice constant (a) for each composition of tetrahedrite (cubic structure) 
calculated from dhkl and the Miller indices.  

Bragg’s law:  2𝑑sin 𝜃= 𝑛𝜆

 was used to find the interatomic spacing (dhkl) based on the most intense peak at ~30 degrees, 
which is (222).  The interatomic spacing (dhkl) for a cubic system was calculated by the following:

𝑑ℎ𝑘𝑙=
𝑎

ℎ2 + 𝑘2 + 𝑙2

where a is the lattice constant and (hkl) are the Miller indices for a given plane.
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Table S2 is provided for reference to Table S3 and S4, these are the ranges for the atomic mass 

percentages based on the elemental range of tetrahedrite compositions: Cu12-14.5Sb4-4.5S13.  

Shown in Table S3 is energy-dispersive x-ray spectroscopy (EDS) quantitative analysis used to 

investigate the reaction pathway for the bottom-up solution-phase synthesis of tetrahedrite (Cu12-

14.5Sb4-4.5S13).  The mass percentages of the resulting nanoparticle powders formed at these reaction 

temperatures after 60 minutes reaction time are shown in the table.  A minimum of three spots 

were measured by EDS and the average of these measurements is given alongside the % stdev, 

which represents the spot-to-spot deviation.
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Shown in Table S4 is EDS quantitative analysis used to investigate the reaction pathway for the 

bottom-up solution-phase synthesis of tetrahedrite (Cu12-14.5Sb4-4.5S13).  The mass percentages of 

the resulting nanoparticle powders formed after a specific reaction time listed in the chart at 220 

°C.  A minimum of three spots were measured by EDS and the average of these measurements is 

given alongside the % stdev, which represents the spot-to-spot deviation.

 


