SUPPORTING INFORMATION

Unraveling the photophysical and semiconducting properties of color converter

luminogens with aggregation induced emission characteristics

M. Paz Fernández-Liencres,^a Mónica Moral,^b Yilin Zhang,^c Ting Han,^d Meijuan Jiang,^d Andrés Garzón-

Ruiz,^{e,*} Amparo Navarro,^{a,*} Kam Sing Wong,^c Ben Zhong Tang, ^{d,*}

^aDepartment of Physical and Analytical Chemistry, Faculty of Experimental Sciences, Universidad de Jaén, Campus Las Lagunillas, E23071 Jaén, Spain. Email: <u>anavarro@ujaen.es</u>

^bRenewable Energy Research Institute, University of Castilla-La Mancha, Paseo de la Investigación 1, 02071 Albacete, Spain

^c Department of Physics, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

^d Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. Email: <u>tangbenz@ust.hk</u>

^eDepartment of Physical Chemistry, Faculty of Pharmacy, Universidad de Castilla-La Mancha, Cronista Francisco Ballesteros Gómez, 1, E02071 Albacete, Spain. Email: <u>Andres.Garzon@uclm.es</u>

Figure S1. Shapes of HOMO and LUMO of the studied compounds calculated at the PBE0/6-31G** level in THF solution (isocontour plots, 0.02 au).

Figure S2. π -stacking arrangement in the TPA-BMO crystal.

Figure S3. Atomic displacements of some selected normal modes (corresponding to high HR factor values) calculated for DMA-AM and TPA-BMO in THF solution at the PBE0/6-31G** level of theory.

Figure S4. Atomic displacements of some selected normal modes (corresponding to high HR factor values) calculated for TPE-BMO and DM-TPE-BMO in THF solution at the PBE0/6-31G** level of theory.

Figure S5. Variation of selected dihedral angles from neutral form (N) to anionic state (A) or cationic state (C) calculated at the B3LYP/6-31G** level of theory in the gas phase.

Figure S6. Cyclic voltammogram curves obtained for DMA-AM, TPA-BMO, TPE-BMO, and DM-TPE-BMO.

Figure S7. Molecular structures and the numbering of selected atoms for the investigated molecules.

	0	BOND	LENGT	H		BOND A	NGLE		DIHEDRAL ANGLE					
Compound		S ₀	S_1	$\Delta(S_1-S_0)$		S ₀	S ₁	$ \Delta(S_1-S_0) $		S ₀	S ₁	$ \Delta(S_1-S_0) $		
	<i>C17-C22</i>	1.440	1.432	0.008	C17-C22-N1	123.09	120.81	2.28	C15-C17-C22-N1	-0.18	-0.55	0.37*		
	C22-N1	1.293	1.321	0.028	C22-N1-C8	120.87	122.84	1.97	C22-N1-C8-C10	1.82	-0.06	1.88		
DMA-AM	N1-C8	1.379	1.345	0.034	N1-C8-C9	117.58	117.93	0.35	N1-C8-C9-N2	3.82	4.01	0.19*		
	C8-C10	1.427	1.422	0.005	N1-C8-C10	122.50	122.63	0.13	C10-C8-C9-C11	1.50	1.73	0.23*		
	<i>C8-C9</i>	1.379	1.429	0.050	C8-C9-C11	120.12	121.73	1.61	C13-C12-N7-C28	-0.22	0.11	0.33		
	C9-C11	1.429	1.403	0.026	C8-C9-N2	122.22	118.39	3.83						
	C9-N2	1.357	1.362	0.005	C20-C12-N7	121.33	121.07	0.26						
	C12-N7	1.362	1.362	0.000	C12-N7-C28	120.30	120.40	0.10						
	C24-C15	1.472	1.459	0.013	C24-C15-C16	121.11	121.61	0.50	C32-C24-C15-C16	32.14	25.40	6.74		
	C29-N4	1.404	1.403	0.001	C30-C29-N4	120.86	120.40	0.46	C30-C29-N4-C45	-34.42	-39.18	4.76*		
TPA-BMO	N4-C45	1.416	1.405	0.011	C29-N4-C45	120.42	119.89	0.53	C29-N4-C45-C46	-43.29	-37.52	5.77		
	N4-C34	1.416	1.405	0.011	C29-N4-C34	120.39	119.86	0.53	C29-N4-C34-C35	-43.69	-37.62	6.07		
	<i>C10-C8</i>	1.444	1.420	0.024	<i>C10-C8-C7</i>	129.70	129.43	0.27	<i>C18-C10-C8-C7</i>	0.50	-0.85	1.35*		
	C8-C 7	1.356	1.392	0.036	<i>C</i> 8- <i>C</i> 7- <i>C</i> 6	122.26	122.85	0.59						
	<i>C7-C6</i>	1.472	1.443	0.029	<i>C7-C6-O2</i>	133.46	134.58	1.12						
	C7-N3	1.396	1.391	0.005	C8-C7-N3	129.38	128.39	0.99						
	C6-O2	1.203	1.221	0.018										
	C23-C14	1.475	1.449	0.026	C31-C23-C14	121.09	121.80	0.71	<i>C31-C23-C14-C15</i>	-34.02	-18.83	15.19		
	C28-C33	1.486	1.440	0.046	C29-C28-C33	121.46	121.87	0.41	C29-C28-C33-C45	-48.09	-30.08	18.01		
TPE-BMO	C33-C45	1.363	1.425	0.062	C28-C33-C45	122.56	121.72	0.84	C28-C33-C45-C46	-12.22	-29.54	17.32*		
	C33-C34	1.488	1.471	0.017	<i>C33-C45-C46</i>	122.53	121.02	1.51	<i>C33-C45-C46-C47</i>	-48.96	-34.60	14.36		
	C9-C7	1.445	1.421	0.024	<i>C33-C45-C57</i>	122.57	120.73	1.84	<i>C33-C45-C57-C58</i>	-48.77	-35.94	12.83		
	C7-C6	1.355	1.382	0.027	C28-C33-C34	114.83	118.25	3.42	C28-C33-C34-C35	-46.64	-39.08	7.56		
	<i>C6-C5</i>	1.472	1.450	0.022	<i>C17-C9-C7</i>	123.67	124.12	0.45	<i>C17-C9-C7-C6</i>	0.12	0.44	0.32*		
	C6-N3	1.396	1.393	0.003	<i>C7-C6-C5</i>	122.25	122.61	0.36						
	<i>C5-O2</i>	1.203	1.215	0.012	C7-C6-N3	129.41	128.69	0.72						
	C31-C20	1.475	1.455	0.020	C29-C31-C20	121.08	121.63	0.55	C29-C31-C20-C18	33.59	22.38	11.21		
	C26-C25	1.485	1.419	0.066	C27-C26-C25	121.51	121.63	0.12	C27-C26-C25-C36	-46.86	-32.77	14.09		
	C25=C36	1.366	1.449	0.083	C26-C25-C36	122.60	121.62	0.98	C26-C25-C36-C37	-13.48	-27.62	14.14*		
	C25-C65	1.488	1.469	0.019	<i>C25-C36-C37</i>	122.45	121.22	1.23	C25-C36-C37-C45	-46.23	-35.44	10.79		
DM-TPE-BMO	C15-C13	1.445	1.420	0.025	C25-C36-C51	122.37	120.89	1.48	C25-C36-C51-C59	-47.03	-36.47	10.56		
	C13-C12	1.355	1.387	0.032	C26-C25-C65	114.82	117.88	3.06	C26-C25-C65-C66	-46.56	-38.20	8.36		
	C12-C11	1.472	1.445	0.027	C16-C15-C13	123.65	124.16	0.51	C16-C15-C13-C12	-0.06	-0.09	0.03*		
	C12-N5	1.396	1.393	0.020	C13-C12-C11	122.26	122.75	0.49						
	<i>C11-O2</i>	1.203	1.219	0.066	C13-C12-N5	129.39	128.50	0.89						

Table S1. Selected structural parameters (bond lengths in Å, bond angles in degrees and inter-ring dihedral angles in degrees) calculated for the S_0 and S_1 states in THF solution at the PBE0/6-31G** level of theory (atom numbering is shown in **Figure 1**). $|\Delta(S_1-S_0)|$ is the numerical difference between a structural parameter calculated for the molecule in excited state with respect to the ground state. The numbering of atoms is shown in Figure S7.

* The dihedral angle increases after excitation.

Table S2. Selected structural parameters (bond lengths in Å, bond angles in degrees and inter-ring dihedral angles in degrees) calculated for the S_0 and S_1 states in solid phase at the PBE0/6-31G**//UFF level of theory (atom numbering shown in **Figure 1**). $|\Delta(S_1-S_0)|$ is the numerical difference between a structural parameter calculated for the molecule in excited state with respect to the ground state. The numbering of atoms is shown in Figure S7.

|--|

		S ₀	S ₁	$ \Delta(S_1-S_0) $		S ₀	S_1	$\Delta(S_1-S_0)$		S ₀	S_1	$ \Delta(S_1-S_0) $	Crystal ^a
	C17-C22	1.439	1.430	0.009	C17-C22-N1	123.63	121.80	1.83	C15-C17-C22-N1	3.34	2.31	1.03	1.65
	C22-N1	1.289	1.318	0.029	C22-N1-C8	119.55	120.43	0.88	C22-N1-C8-C10	4.09	4.05	0.04	-2.07
DMA-AM	N1-C8	1.381	1.351	0.030	N1-C8-C9	117.53	117.68	0.15	N1-C8-C9-N2	-4.32	-5.19	0.87*	3.11
	C8-C10	1.425	1.419	0.006	N1-C8-C10	121.50	121.75	0.25	C10-C8-C9-C11	-3.59	-5.12	1.53*	0.78
	<i>C8-C9</i>	1.372	1.418	0.046	C8-C9-C11	120.99	122.79	1.80	C13-C12-N7-C28	13.41	11.99	1.42	14.15
	C9-C11	1.423	1.402	0.021	C8-C9-N2	121.64	117.26	4.38					
	C9-N2	1.361	1.358	0.003	C20-C12-N7	120.89	120.28	0.61					
	C12-N7	1.369	1.373	0.004	C12-N7-C28	120.14	120.32	0.18					
	C24-C15	1.473	1.472	0.001	C24-C15-C16	121.42	121.81	0.39	C32-C24-C15-C16	25.54	26.87	1.33*	21.56
	C29-N4	1.403	1.418	0.015	C30-C29-N4	121.74	121.11	0.63	C30-C29-N4-C45	-33.57	-37.05	3.48*	-36.06
TPA-BMO	N4-C45	1.420	1.413	0.007	C29-N4-C45	120.01	119.70	0.31	C29-N4-C45-C46	-61.03	-55.89	5.14	-59.93
	N4-C34	1.411	1.387	0.024	C29-N4-C34	121.70	121.63	0.07	C29-N4-C34-C35	-32.70	-28.92	3.78	-37.34
	C10-C8	1.444	1.428	0.016	<i>C10-C8-C7</i>	130.05	129.40	0.65	C18-C10-C8-C7	4.23	4.12	0.11	7.18
	<i>C8-C7</i>	1.354	1.385	0.031	<i>C8-C7-C6</i>	121.73	121.91	0.18					
	C7-C6	1.472	1.450	0.022	C7-C6-O2	133.44	134.20	0.76					
	C7-N3	1.394	1.387	0.007	C8-C7-N3	129.73	129.22	0.51					
	<i>C6-O2</i>	1.198	1.212	0.014									
	C23-C14	1.474	1.459	0.015	C31-C23-C14	121.83	122.35	0.52	C31-C23-C14-C15	-33.63	-33.30	0.33	-30.43
	C28-C33	1.484	1.452	0.032	C29-C28-C33	122.31	123.39	1.08	C29-C28-C33-C45	-44.34	-37.53	6.81	-45.21
TPE-BMO	<i>C33=C45</i>	1.367	1.412	0.045	C28-C33-C45	122.81	122.73	0.08	C28-C33-C45-C46	-11.57	-16.53	4.96*	-10.50
	C33-C34	1.488	1.469	0.019	<i>C33-C45-C46</i>	122.71	121.49	1.22	<i>C33-C45-C46-C47</i>	-39.77	-34.77	5.00	-40.16
	<i>C9-C7</i>	1.445	1.425	0.020	<i>C33-C45-C57</i>	120.95	120.77	0.18	<i>C33-C45-C57-C58</i>	-49.23	-40.16	9.07	-50.21
	<i>C7-C6</i>	1.353	1.380	0.027	C28-C33-C34	115.22	116.10	0.88	C28-C33-C34-C35	-47.24	-42.53	4.71	-46.66
	<i>C6-C5</i>	1.476	1.454	0.022	<i>C17-C9-C7</i>	123.94	124.30	0.36	<i>C17-C9-C7-C6</i>	-4.51	-4.90	0.39*	-1.88
	C6-N3	1.395	1.390	0.005	<i>C7-C6-C5</i>	121.91	122.15	0.24					
	C5-O2	1.199	1.211	0.012	C7-C6-N3	129.40	128.85	0.55					
	C31-C20	1.474	1.463	0011	C29-C31-C20	120.67	121.24	0.57	C29-C31-C20-C18	20.11	16.56	3.55	18.85
	C26-C25	1.487	1.462	0025	C27-C26-C25	121.43	121.81	0.38	C27-C26-C25-C36	-45.15	-41.02	4.13	-45.24
	C25=C36	1.365	1.401	0036	C26-C25-C36	123.40	122.92	0.48	C26-C25-C36-C37	-14.77	-18.45	3.68*	-14.23
	C25-C65	1.486	1.466	0020	C25-C36-C37	120.10	119.90	0.20	C25-C36-C37-C45	-52.65	-46.67	5.98	-54.71
DM- TPE-BMO	C15-C13	1.442	1.422	0020	C25-C36-C51	121.01	120.97	0.04	C25-C36-C51-C59	-51.86	-42.36	9.50	-49.20
	C13-C12	1.354	1.381	0027	C26-C25-C65	113.83	115.67	1.84	C26-C25-C65-C66	-35.94	-33.88	2.06	-38.62
	C12-C11	1.473	1.450	0023	C16-C15-C13	122.81	123.34	0.53	C16-C15-C13-C12	-4.25	-2.25	2.00	-5.36
	C12-N5	1.394	1.389	0005	C13-C12-C11	122.48	122.58	0.10					
	<i>C11-O2</i>	1.198	1.211	0013	C13-C12-N5	128.86	128.32	0.54					

^a Experimental crystallographic parameters (references [6,7])

* The dihedral angle increases after excitation.

Table S3. Selected structural parameters (bond lengths in Å, bond angles in degrees and inter-ring dihedral angles in degrees) calculated for the neutral, anionic and cationic species in gas phase at the B3LYP/6-31G** level of theory. $|\Delta(A-N)|$ is the numerical difference between a structural parameter calculated for the molecule in anionic form with respect to the neutral state. $|\Delta(C-N)|$ is the numerical difference between a structural parameter calculated for the neutral state. The numbering of atoms is shown in Figure S7.

Compound			BO	OND LEN	GTH		BOND ANGLE							DIHEDRAL ANGLE					
Compound		Neutral	Anion	Cation	Δ(A-N)	Δ(C-N)		Neutral	Anion	Cation	Δ(A-N)	Δ(C-N)		Neutral	Anion	Cation	Δ(A-N)	Δ(C-N)	
	C17-C22	1.448	1.437	1.417	0.011	0.031	C17-C22-N1	123.31	122.48	122.55	0.83	0.76	τ_l	0.15	0.17	-0.01	0.02	0.16	
DMA-AM	C22-N1	1.295	1.324	1.322	0.029	0.027	C22-N1-C8	120.93	123.76	120.34	2.83	0.59	$ au_2$	2.80	0.35	0.00	2.45	2.80	
	N1-C8	1.388	1.356	1.352	0.032	0.036	N1-C8-C9	117.34	119.01	117.47	1.67	0.13	τ_3	4.48	5.53	-0.01	1.05*	4.49	
	C8-C10	1.432	1.432	1.433	0.000	0.001	N1-C8-C10	121.98	121.26	123.09	0.72	1.11	$ au_4$	2.28	3.67	0.00	1.39*	2.28	

	C8-C9	1.380	1.420	1.415	0.040	0.035	C8-C9-C11	121.42	123.79	120.74	2.37	0.68	$ au_5$	-1.00	-22.31	0.12	21.31*	1.12
	C9-C11	1.431	1.402	1.430	0.029	0.001	C8-C9-N2	121.75	118.31	121.30	3.44	0.45						
	C9-N2	1.373	1.424	1.336	0.051	0.037	C20-C12-N7	121.35	121.76	121.06	0.41	0.29						
	C12-N7	1.376	1.421	1.349	0.045	0.027	C12-N7-C28	120.29	120.96	121.01	0.67	0.72						
	C24-C15	1.478	1.460	1.460	0.018	0.018	C24-C15-C16	121.22	122.14	121.25	-0.92	-0.03	$ au_I$	33.24	21.74	24.62	11.50	8.62
	C29-N4	1.414	1.436	1.390	0.022	0.024	C30-C29-N4	120.90	120.87	120.77	0.03	0.13	$ au_2$	-36.59	-58.11	-28.81	21.52*	7.78
	N4-C45	1.424	1.413	1.427	0.011	0.003	C29-N4-C45	120.32	119.04	120.83	1.28	-0.51	$ au_3$	-43.96	-33.17	-45.57	10.79	1.61*
TPA-RMO	N4-C34	1.424	1.413	1.427	0.011	0.003	C29-N4-C34	120.30	119.04	120.82	1.26	-0.52	$ au_4$	-44.01	-33.18	-45.53	10.83	1.52*
ПА-БМО	C10-C8	1.448	1.416	1.443	0.032	0.005	<i>C10-C8-C7</i>	129.91	124.60	128.92	5.31	0.99	$ au_5$	0.29	-0.12	0.30	0.41	0.01*
	<i>C</i> 8- <i>C</i> 7	1.358	1.398	1.362	0.040	0.004	C8-C7-C6	122.32	130.33	121.89	-8.01	0.43						
	C7-C6	1.479	1.444	1.490	0.035	0.011	C7-C6-O2	133.60	135.34	133.02	-1.74	0.58						
	C7-N3	1.403	1.401	1.390	0.002	0.013	C8-C7-N3	129.15	127.84	129.58	1.31	-0.43						
	<i>C6-O2</i>	1.202	1.222	1.197	0.020	0.005												
	C23-C14	1.480	1.458	1.466	0.022	0.014	C31-C23-C14	121.23	122.25	121.35	-1.02	-0.12	$ au_I$	-34.56	-20.31	-27.22	14.25	7.34
	C28-C33	1.493	1.471	1.461	0.022	0.032	C29-C28-C33	121.65	122.37	121.85	-0.72	-0.20	$ au_2$	-48.59	-36.75	-36.88	11.84	11.71
	C33-C45	1.367	1.391	1.414	0.024	0.047	C28-C33-C45	122.73	123.50	121.85	-0.77	0.88	$ au_3$	-12.25	-20.13	-24.02	7.88*	11.77*
	C33-C34	1.496	1.494	1.477	0.002	0.019	C33-C45-C46	122.67	122.37	121.39	0.30	1.28	$ au_4$	-49.81	-43.24	-40.32	6.57	9.49
TPE-BMO	C9-C7	1.449	1.421	1.456	0.028	0.007	C33-C45-C57	122.64	122.16	121.65	0.48	0.99	$ au_5$	-49.62	-43.35	-40.10	6.27	9.52
	C7-C6	1.358	1.389	1.360	0.031	0.002	C28-C33-C34	114.6	115.73	117.00	-1.13	-2.40	τ_6	-45.47	-45.16	-41.27	0.31	4.20
	C6-C5	1.479	1.450	1.489	0.029	0.010	<i>C17-C9-C7</i>	123.78	124.52	123.68	-0.74	0.10	$ au_7$	-0.27	-0.04	-0.33	0.23	0.06*
	C6-N3	1.403	1.402	1.393	0.001	0.010	C7-C6-C5	122.30	122.85	121.95	-0.55	0.35						
	C5-O2	1.202	1.218	1.197	0.016	0.005	C7-C6-N3	129.17	128.08	129.55	1.09	-0.38						
	C31-C20	1.478	1.458	1.470	0.020	0.008	C29-C31-C20	121.21	122.20	121.36	-0.99	-0.15	$ au_I$	34.61	20.56	28.72	14.05	5.89
	C26-C25	1.492	1.472	1.461	0.020	0.031	C27-C26-C25	121.70	122.28	121.86	-0.58	-0.16	$ au_2$	-47.58	-36.98	-35.94	10.60	11.64
	C25-C36	1.396	1.389	1.419	0.007	0.023	C26-C25-C36	122.75	123.51	121.80	-0.76	0.95	$ au_3$	-13.35	-19.96	-26.03	6.61*	12.68*
	C25-C65	1.496	1.495	1.476	0.001	0.020	C25-C36-C37	122.60	122.52	121.23	0.08	1.37	$ au_4$	-47.47	-42.97	-37.58	4.50	9.89
DM-TPE-BMO	C15-C13	1.449	1.420	1.449	0.029	0.000	C25-C36-C51	122.47	122.07	121.33	0.40	1.14	$ au_5$	-48.03	-43.93	-38.12	4.10	9.91
	C13-C12	1.358	1.391	1.358	0.033	0.000	C26-C25-C65	114.63	115.68	117.23	-1.05	-2.60	$ au_6$	-47.61	-45.24	-40.48	2.37	7.13
	C12-C11	1.479	1.449	1.487	0.030	0.008	C16-C15-C13	123.79	124.54	123.67	-0.75	0.12	$ au_7$	0.26	-0.01	0.28	0.27	0.02*
	C12-N5	1.403	1.402	1.397	0.001	0.006	C13-C12-C11	122.31	122.87	122.02	-0.56	0.29						
	C11-O2	1.202	1.219	1.198	0.017	0.004	C13-C12-N5	129.16	128.04	129.50	1.12	-0.34						

*The dihedral angle departs from zero from neutral to charged state.

Table S4. Vertical transition energies (E_{ab}^{C}) , oscillator strength (*f*) and main components of the transitions (% Contribution) computed for a single molecule, three molecular dimers and a tetramer extracted from the crystal of DMA-AM (without further optimization) and shown in Figure 3(a).

Species	$E_{ab}^{C}/eV(nm)$	f ^a	% Contribution
Molecule 1	3.33 (373)	1.025	$H \rightarrow L (99.7)$
	4.17 (298)	0.105	$H-1 \rightarrow L$ (59.2), $H \rightarrow L+1$ (37.3)
	4.43 (280)	0.048	$H \rightarrow L+2$ (54.5), $H-2 \rightarrow L$ (23.3)
	4.51 (275)	0.013	$H \rightarrow L+1 (92.0)$
	4.77 (260)	0.146	$H \rightarrow L+1$ (49.2), $H-1 \rightarrow L$ (28.3), $H-2 \rightarrow L$ (11.0)
	4.93 (252)	0.014	$H \rightarrow L+3$ (76.1), $H-1 \rightarrow L+3$ (10.8)
	4.96 (250)	0.036	$H-2 \rightarrow L$ (54.1), $H \rightarrow L+2$ (29.9)
	5.49 (226)	0.052	$H-1 \rightarrow L+1$ (88.4)
	5.90 (210)	0.081	H-4→L (73.7)
	6.32 (196)	0.050	$H-1 \rightarrow L+1 (84.9)$
	6.75 (184)	0.165	H-6→L (78.5)
	6.81 (182)	0.121	H-7 \rightarrow L (70.4), H-2 \rightarrow L+2 (18.9)
Dimer A	2.74 (453)	0.023	$H \rightarrow L+1 (52.6), H-1 \rightarrow L (46.9)$
	3.34 (371)	1.513	$H \rightarrow L+1$ (45.8), $H-1 \rightarrow L$ (51.2)
	3.83 (324)	0.017	$H-2 \rightarrow L$ (58.7), $H-1 \rightarrow L+1$ (20.7), $H \rightarrow L+2$ (17.2)
	3.95 (314)	0.299	$H \rightarrow L+2$ (68.5), $H-2 \rightarrow L$ (26.5)
	4.27 (291)	0.066	$H-2 \rightarrow L+1 (59.1), H-1 \rightarrow L+3 (12.2)$
	4.34 (286)	0.062	$H \rightarrow L + 4 (46.8), H - 5 \rightarrow L (24.8)$
	4.50 (275)	0.010	$H-6 \rightarrow L$ (55.4), $H-7 \rightarrow L+1$ (32.2)
	4.56 (272)	0.086	$H-1 \rightarrow L+3$ (39.2), $H \rightarrow L+4$ (29.3)
	4.65 (267)	0.086	H-4→L+1 (39.9), H-5→L (33.4), H-1→L+5 (15.3)
	4.76 (261)	0.084	$H \rightarrow L+6 (33.4), H-1 \rightarrow L+3 (32.1)$
Dimer B	2 51 (494)	0.037	$H \rightarrow L$ (97.6)
	3.17 (391)	0.158	$H \rightarrow L+1$ (62.4), $H-1 \rightarrow L$ (36.6)
	3.31 (375)	1.167	$H \rightarrow L^{+1}$ (30.7), $H^{-1} \rightarrow L$ (53.5)
	3.41 (363)	0.415	$H-1 \rightarrow L+1$ (85.1)
	4.13 (300)	0.185	$H-2 \rightarrow L+1$ (51.5), $H \rightarrow L+3$ (36.6)
	4.17 (286)	0.068	$H-3 \rightarrow L(54.7), H-1 \rightarrow L+2(38.0)$
	4.34 (286)	0.021	$H-4 \rightarrow L$ (33.3), $H \rightarrow L+4$ (15.4), $H \rightarrow L+3$ (12.7)
	4.36 (284)	0.055	$H-4 \rightarrow L(25.6), H \rightarrow L+3(20.7), H \rightarrow L+4(18.7)$
	4.44 (279)	0.015	$H-1 \rightarrow L+3$ (14.9), $H \rightarrow L+4$ (14.3), $H-4 \rightarrow L$ (13.0)
	4.48 (277)	0.019	$H-4\rightarrow L$ (22.5), $H\rightarrow L+4$ (15.8), $H\rightarrow L+5$ (12.8)
	4.51 (275)	0.011	$H-6 \rightarrow L+1 (84.5)$
	4.74 (262)	0.237	$H-1 \rightarrow L+2$ (22.5), $H-3 \rightarrow L+1$ (14.9), $H-3 \rightarrow L$ (11.8)
	4.85 (256)	0.019	$H \rightarrow L+7 (61.3), H-4 \rightarrow L+1 (12.6)$
Dimer C	2.51 (494)	0.037	H→L (97.6)
	3.17 (391)	0.158	$H \rightarrow L+1$ (62.4), $H-1 \rightarrow L$ (36.6)
	3.31 (375)	1.168	$H-1 \rightarrow L$ (53.5), $H \rightarrow L+1$ (30.7), $H-1 \rightarrow L+1$ (14.6)
	3.41 (364)	0.419	$H-1 \rightarrow L+1 (84.9)$
	4.13 (300)	0.185	$H-2 \rightarrow L+1$ (51.6), $H \rightarrow L+3$ (36.6)
	4.17 (297)	0.069	$H-3 \rightarrow L$ (54.7), $H-1 \rightarrow L+2$ (38.0)
	4.34 (286)	0.021	$H-4 \rightarrow L$ (33.1), $H \rightarrow L+4$ (15.4), $H \rightarrow L+3$ (12.8)
	4.36 (284)	0.055	$H-4\rightarrow L$ (25.8), $H\rightarrow L+3$ (20.5), $H\rightarrow L+4$ (18.5)
	4.44 (279)	0.015	$H-1 \rightarrow L+3$ (14.8), $H \rightarrow L+4$ (14.6), $H-4 \rightarrow L$ (12.8)
	4.48 (277)	0.019	$H-4 \rightarrow L$ (22.7), $H \rightarrow L+4$ (15.8), $H \rightarrow L+5$ (12.6)
	4.51 (275)	0.011	H-6→L+1 (84.4)
	4.74 (262)	0.237	H-1→L+2 (22.7), H-3→L+1 (14.9) , H-3→L (11.9)
	4.85 (256)	0.019	$H \rightarrow L+7 (60.9), H-4 \rightarrow L+1 (12.5)$

Tetramer	2.37 (522)	0.018	$H \rightarrow L+1 (77.4), H-1 \rightarrow L (9.3)$
	2.39 (518)	0.040	H-1 \rightarrow L (69.7),H-2 \rightarrow L (15.2)
	2.70 (459)	0.014	$H \rightarrow L+2 (37.9), H-1 \rightarrow L+2 (23.8), H-2 \rightarrow L+1 (19.7)$
	3.06 (405)	0.039	$H-2 \rightarrow L+2 (66.9), H-2 \rightarrow L+1 16.3)$
	3.19 (389)	0.040	$H-3 \rightarrow L$ (76.6), $H \rightarrow L+3$ (18.1)
	3.24 (382)	0.213	$H \rightarrow L+3$ (29.2), $H-1 \rightarrow L+2$ (25.2), $H-2 \rightarrow L+2$ (22.3)
	3.29 (377)	0.064	H-3→L+1 (37.9),H→L+3 (23.8)
	3.39 (366)	1.401	$H-1 \rightarrow L+3 (30.8), H \rightarrow L+3 (24.6)$
	3.43 (362)	0.952	H-1 \rightarrow L+3 (58.4)
			· ·

Table S5. Selected normal modes v_i of the ground state along with the vibrational reorganization energy and Huang-

DN	MA-AM		ТР	A-BMO		TI	PE-BMO		DM-TPE-BMO			
<i>v</i> _i (cm ⁻¹)	λ(eV)	HR	<i>v</i> _i (cm ⁻¹)	λ (eV)	HR	<i>v</i> _i (cm ⁻¹)	λ(eV)	HR	<i>v</i> _i (cm ⁻¹)	λ(eV)	HR	
29	1	0.28	15	4	2.15	12	9	6.04	9	5	4.48	
48	10	1.68	20	1	0.40	18	54	24.18	14	11	6.33	
272	1	0.03	41	3	0.59	20	18	7.25	17	19	9.01	
388	1	0.02	98	5	0.41	34	37	8.77	27	16	4.78	
425	1	0.02	276	8	0.23	38	1	0.21	33	11	2.69	
479	3	0.05	318	5	0.13	47	1	0.17	38	2	0.42	
535	3	0.05	344	2	0.05	48	9	1.51	39	1	0.21	
540	4	0.06	414	1	0.02	58	3	0.42	49	1	0.16	
567	2	0.03	423	1	0.02	59	2	0.27	56	1	0.14	
669	4	0.05	430	1	0.02	65	1	0.12	65	4	0.50	
788	1	0.01	626	1	0.01	66	7	0.85	85	13	1.23	
896	1	0.01	630	3	0.04	70	16	1.84	87	10	0.93	
986	4	0.03	714	1	0.01	94	1	0.09	99	4	0.33	
1157	1	0.01	716	3	0.03	103	1	0.08	115	4	0.28	
1192	4	0.03	764	2	0.02	257	4	0.13	129	1	0.06	
1203	1	0.01	781	1	0.01	264	3	0.09	222	2	0.07	
1265	1	0.01	843	1	0.01	300	1	0.03	245	4	0.13	
1405	3	0.02	855	2	0.02	325	5	0.12	252	3	0.10	
1410	10	0.06	956	6	0.05	333	1	0.02	289	1	0.03	
1431	4	0.02	985	1	0.01	419	1	0.02	328	4	0.10	
1489	1	0.01	1017	1	0.01	423	2	0.04	349	1	0.02	
1592	2	0.01	1198	2	0.01	425	5	0.09	418	2	0.04	
1601	22	0.11	1201	5	0.03	516	2	0.03	431	1	0.02	
1658	37	0.18	1219	1	0.01	549	5	0.07	552	5	0.07	
1702	3	0.01	1289	1	0.01	573	2	0.03	572	1	0.01	
2372	12	0.04	1330	1	0.01	591	1	0.01	608	1	0.01	
			1337	2	0.01	628	1	0.01	630	2	0.03	
			1351	1	0.01	634	1	0.01	670	1	0.01	
			1423	1	0.01	641	1	0.01	713	2	0.02	
			1546	1	0.01	714	4	0.05	744	1	0.01	
			1609	2	0.01	716	1	0.01	749	1	0.01	
			1636	1	0.00	745	2	0.02	831	1	0.01	
			1659	23	0.11	777	1	0.01	833	1	0.01	
			1663	3	0.01	785	1	0.01	857	1	0.01	
			1677	8	0.04	860	1	0.01	957	5	0.04	
			1696	2	0.01	867	2	0.02	1169	5	0.03	
			1738	10	0.05	956	3	0.03	1201	7	0.05	
			1886	10	0.04	1018	1	0.01	1202	1	0.01	

Rhys (HR) factor calculated for the studied compounds in THF solution at the PBE0/6-31G** level of theory.

Table S6. HOMO and LUMO energy (E_{HOMO} and E_{LUMO}) and energy gap (E_{H-L}) calculated at the B3LYP/6-31G** level of theory in gas phase

Compound	E _{HOMO} (eV)	$E_{\rm LUMO}({\rm eV})$	$E_{\text{H-L}}(\text{eV})$
DMA-AM	-5.32	-2.12	3.20
TPA-BMO	-5.06	-2.28	2.78
TPE-BMO	-5.37	-2.35	3.02
DM-TPE-BMO	-5.05	-2.29	2.75

 Table S7. Summary of Electrochemical Parameters.

Compound	λ _{onset.abs} (nm)	$E_{\rm g}({\rm eV})$	$E_{\rm ox}~({\rm eV})$	E _{HOMO} (eV)	E _{LUMO} (eV)
DMA-AM	464	2.67	0.75	-5.20	-2.53
TPA-BMO	491	2.53	0.88	-5.33	-2.80
TPE-BMO	435	2.85	1.22	-5.67	-2.82
DM-TPE-BMO	455	2.73	0.95	-5.40	-2.67

 $\overline{E_{g}}$ is estimated from the UV-vis absorption spectra. $E_{g} = hc/\lambda_{onest.abs} = 1240/\lambda_{onset.abs}$ E_{HOMO} is calculated from the oxidation potentials: $E_{HOMO} = -(E^{ox} - E(Fc/Fc^{+})+4.8) \text{ eV}$ E_{LUMO} is deduced from the HOMO and E_{g} : $E_{LUMO} = E_{HOMO} - E_{g}$

	DMA-	AM		ТРА-ВМО					TPE-	BMO		DM- TPE-BMO				
Isolated r	nolecule	Clus	ter	Isolated	molecule	Clu	ster	Isol	ated	Clu	ster	Iso	lated	Cl	uster	
S_0	S_1	S_0	S_1	S_0	S_1	S_0	\mathbf{S}_1	S_0	\mathbf{S}_1	S_0	S_1	S_0	S_1	S_0	S_1	
32	31	54	102	14	15	80	78	12	12	66	68	10	9	65	66	
36	36	60	103	19	20	85	84	18	17	70	78	14	16	69	70	
50	51	67	111	24	26	87	86	20	21	77	80	18	18	71	71	
70	59	82	121	36	46	95	96	34	33	80	81	27	26	72	75	
82	81	91	139	38	49	99	101	38	38	86	87	33	36	79	81	
88	111	92	144	47	53	117	119	47	50	94	94	37	40	82	84	
113	113	104	150	60	65	121	124	48	59	96	96	40	44	84	87	
132	134	107	164	65	70	126	131	58	60	103	102	46	51	97	97	
135	134	114	199	72	81	131	133	59	66	110	111	49	57	104	100	
181	187	127	207	90	93	139	141	65	71	114	116	55	59	114	114	
189	190	144	245	97	106	142	143	66	73	122	124	59	71	119	118	
209	202	149	257	112	112	154	161	69	90	133	133	64	78	128	126	
261	259	158	270	133	132	165	168	91	95	135	133	85	87	133	134	
265	267	169	271	153	155	173	172	94	106	143	143	87	99	138	140	
272	279	200	305	160	160	181	191	103	110	149	147	94	101	147	147	
278	308	208	316	180	186	213	216	120	124	154	158	99	112	150	156	
339	331	238	354	201	212	220	225	135	136	174	177	106	114	153	159	
380	363	265	368	220	228	238	241	159	157	189	192	115	123	162	164	
388	374	273	380	242	244	251	249	175	178	193	197	130	135	172	172	
426	386	279	420	249	251	269	268	176	186	204	204	150	151	173	175	
433	414	296	429	276	276	285	285	180	194	220	223	156	163	182	184	
443	427	309	438	289	284	310	299	208	217	239	238	165	172	186	187	
479	462	381	478	318	317	326	326	231	235	251	252	174	178	195	190	
509	480	399	497	328	327	335	333	242	240	262	260	180	188	203	204	
527	509	428	518	344	345	358	354	258	259	270	266	187	195	210	216	
536	521	438	530	379	365	391	377	260	267	273	274	207	212	212	221	
539	532	445	539	414	414	419	418	264	274	279	281	215	222	228	228	
568	535	476	574	419	415	432	425	284	284	298	292	221	225	239	240	
581	568	487	594	420	417	435	434	300	305	311	311	245	240	244	243	
648	627	507	638	422	422	441	437	325	325	338	333	251	246	255	246	

Table S8. Harmonic vibrational wavenumbers (cm⁻¹) calculated for S_0 and S_1 states in THF solution (PBE0/6-31G**) in solution and in solid state (ONIOM: PBE0/6-31G**:UFF).

669	636	533	642	430	427	451	443	333	331	343	337	254	252	258	258
681	675	545	669	442	435	454	450	386	362	385	372	259	265	270	269
726	724	575	728	448	449	459	459	395	404	407	406	279	277	279	272
742	730	578	732	499	470	507	480	415	410	418	416	289	287	302	295
789	787	638	794	521	505	529	515	416	413	425	422	297	300	322	318
818	798	654	797	523	512	533	531	418	419	430	424	327	326	330	322
838	828	675	822	540	548	552	560	419	423	435	434	337	333	352	351
896	866	697	864	574	570	579	573	423	424	439	440	349	343	368	355
963	880	737	888	574	572	586	579	425	430	449	444	363	354	376	362
982	965	750	953	626	620	631	621	463	442	468	451	381	368	387	381
982	968	798	958	628	622	633	628	487	465	497	475	404	403	412	411
986	973	820	987	630	626	636	630	497	483	505	490	416	415	424	424
1012	991	845	1012	634	631	641	639	516	496	521	506	417	422	436	426
1021	1005	906	1029	642	638	647	645	549	513	558	535	425	423	443	435
1091	1092	956	1099	649	650	654	656	564	545	566	561	427	431	447	445
1140	1120	981	1141	655	652	662	657	573	560	583	564	431	434	450	447
1142	1139	997	1154	675	661	681	663	591	572	596	581	438	436	457	457
1157	1153	1018	1163	699	693	703	695	598	597	600	597	470	457	473	461
1193	1177	1020	1174	713	700	721	708	627	622	632	627	478	470	476	473
1205	1182	1035	1205	714	703	723	717	628	623	633	628	482	476	481	480
1215	1204	1100	1210	716	711	732	722	631	625	636	630	501	485	506	488
1265	1244	1161	1252	737	722	742	730	634	627	640	632	527	512	531	522
1300	1284	1167	1296	761	743	768	753	641	637	645	640	530	518	544	526
1309	1311	1170	1323	763	749	768	756	645	643	651	649	552	541	559	546
1352	1329	1211	1344	774	761	783	766	653	651	657	654	556	545	568	555
1406	1376	1221	1378	781	781	787	792	658	655	661	658	572	557	575	571
1410	1390	1234	1396	782	783	804	805	675	666	679	666	580	567	589	580
1431	1425	1277	1419	843	811	853	824	691	687	695	693	588	587	594	587
1442	1435	1309	1441	843	831	860	855	705	693	707	697	608	605	608	607
1449	1447	1321	1457	852	843	864	858	714	703	718	710	629	625	634	629
1485	1463	1360	1473	854	847	868	861	716	708	718	712	630	626	637	632
1491	1478	1415	1486	859	849	876	870	718	712	724	716	639	634	644	641
1492	1481	1425	1494	865	853	878	875	720	713	732	724	644	639	652	650
1498	1487	1442	1502	878	858	890	875	745	729	749	738	647	645	654	653
1522	1497	1452	1516	907	868	908	887	750	745	755	747	649	648	656	654
1534	1508	1460	1524	918	888	925	890	768	755	776	762	655	650	663	660
1592	1527	1495	1547	921	928	935	934	777	758	780	764	670	666	673	666

1601	1530	1504	1556	949	935	954	939	783	775	792	782	675	670	680	670
1613	1561	1508	1560	953	949	960	952	785	785	797	799	702	694	709	701
1658	1566	1512	1577	954	953	965	962	799	801	816	815	713	710	718	717
1665	1609	1553	1617	956	965	970	965	840	821	850	830	717	712	725	720
1702	1665	1564	1665	976	972	984	967	857	829	862	848	729	727	734	731
2341	2279	1599	2311	982	980	994	1000	859	842	864	857	744	732	749	735
2372	2309	1612	2334	984	986	996	1002	864	855	867	858	748	744	755	750
3037	3044	1629	3034	984	994	1001	1006	866	857	869	861	757	750	759	752
3045	3052	1680	3044	990	994	1003	1008	867	858	876	865	772	753	777	756
3077	3109	1696	3101	1004	995	1011	1010	867	860	878	872	783	765	786	769
3101	3111	1716	3115	1004	1002	1015	1012	869	865	896	885	785	788	799	804
3102	3118	2363	3124	1009	1008	1021	1012	887	867	899	886	806	809	810	814
3185	3200	2393	3199	1012	1013	1024	1018	891	896	903	889	811	816	815	816
3194	3207	3035	3217	1017	1014	1025	1025	907	897	903	894	830	821	836	819
3205	3216	3046	3234	1017	1017	1026	1029	938	899	938	897	832	826	845	826
3227	3240	3081	3254	1017	1018	1028	1035	944	945	946	945	842	828	846	843
3253	3257	3109	3264	1038	1024	1049	1042	945	950	951	955	849	838	853	846
3255	3258	3116	3277	1059	1045	1068	1057	954	954	955	957	854	843	864	852
3606	3583	3194	3587	1062	1051	1071	1060	957	958	964	959	857	850	868	862
3750	3737	3208	3793	1064	1060	1073	1064	983	975	984	976	861	857	872	867
				1065	1061	1084	1084	988	982	984	986	864	859	880	872
				1097	1087	1098	1089	989	988	994	990	866	864	883	874
				1115	1124	1124	1131	989	991	997	992	875	865	889	879
				1116	1126	1130	1137	989	993	999	993	887	875	895	885
				1150	1147	1153	1148	992	996	1005	1002	898	883	903	889
				1155	1158	1165	1158	997	996	1007	1012	907	891	905	891
				1180	1186	1190	1192	1010	1000	1016	1013	940	901	944	902
				1181	1187	1204	1194	1011	1005	1018	1014	954	952	955	958
				1198	1196	1208	1205	1011	1007	1020	1015	956	962	960	960
				1199	1199	1217	1209	1012	1010	1021	1017	962	971	963	962
				1200	1200	1220	1211	1013	1012	1022	1020	964	973	978	969
				1207	1206	1228	1223	1017	1015	1023	1023	976	975	986	979
				1219	1207	1231	1233	1018	1015	1027	1025	978	983	988	987
				1233	1240	1246	1245	1019	1016	1030	1026	983	985	994	993
				1289	1300	1292	1293	1023	1019	1050	1036	987	988	998	996
				1320	1312	1328	1296	1041	1021	1051	1047	989	989	1003	1007
				1321	1317	1331	1318	1059	1039	1059	1052	991	991	1011	1008

1327 1330 1337 1351 1372 1373 1377 1388 1390	1331 1335 1341 1348 1364 1371	1335 1339 1347 1356 1370	1331 1337 1351	1064 1066 1069	1060 1063	$\begin{array}{c} 1072 \\ 1078 \end{array}$	$1068 \\ 1074$	1009	997 1005	1015	1015
1330 1337 1351 1372 1373 1377 1388 1390	1335 1341 1348 1364 1371	1339 1347 1356	1337 1351	1066 1069	1063	1078	1074	1012	1005	1001	1010
1337 1351 1372 1373 1377 1388 1390	1341 1348 1364 1371	1347 1356 1270	1351	1069			10/1	1012	1005	1021	1018
1351 1372 1373 1377 1388 1390	1348 1364 1371	1356	1254	1007	1064	1080	1076	1013	1008	1023	1019
1372 1373 1377 1388 1390	1364 1371	1270	1354	1097	1091	1098	1091	1018	1015	1028	1028
1373 1377 1388 1390	1371	13/9	1364	1113	1117	1123	1128	1021	1018	1036	1031
1377 1388 1390		1382	1371	1114	1122	1127	1132	1029	1021	1037	1032
1388 1390	1382	1385	1381	1115	1123	1131	1135	1035	1023	1042	1033
1390	1395	1395	1400	1146	1148	1151	1150	1041	1026	1058	1044
	1399	1398	1406	1152	1154	1158	1155	1059	1045	1075	1065
1417	1409	1422	1410	1168	1166	1174	1165	1063	1053	1078	1072
1423	1419	1428	1425	1181	1184	1198	1199	1067	1064	1084	1080
1466	1468	1473	1472	1182	1185	1202	1201	1096	1085	1102	1097
1466	1475	1485	1483	1182	1185	1205	1208	1097	1086	1112	1097
1467	1485	1488	1488	1201	1201	1217	1213	1097	1090	1114	1102
1480	1491	1494	1500	1204	1205	1218	1217	1113	1119	1130	1134
1499	1500	1510	1507	1204	1206	1220	1219	1138	1144	1137	1141
1506	1509	1516	1510	1205	1209	1221	1221	1139	1148	1141	1145
1542	1517	1548	1518	1211	1212	1225	1225	1146	1148	1158	1155
1542	1519	1551	1529	1220	1227	1229	1231	1152	1158	1170	1164
1546	1531	1557	1541	1252	1270	1254	1276	1169	1164	1177	1173
1579	1552	1586	1556	1288	1305	1288	1297	1179	1177	1181	1176
1610	1557	1615	1572	1308	1315	1315	1313	1179	1177	1190	1185
1636	1592	1643	1613	1320	1324	1323	1329	1181	1185	1196	1191
1657	1625	1664	1626	1321	1328	1328	1333	1198	1193	1202	1198
1659	1637	1667	1631	1323	1331	1336	1342	1200	1199	1203	1204
1663	1642	1672	1644	1334	1336	1337	1344	1202	1203	1204	1208
1672	1645	1682	1658	1336	1342	1342	1348	1204	1205	1212	1211
1677	1651	1685	1660	1339	1353	1346	1349	1211	1212	1220	1216
1690	1662	1695	1665	1340	1353	1348	1352	1213	1213	1232	1226
1696	1668	1701	1676	1355	1362	1361	1364	1213	1213	1243	1238
1738	1678	1747	1687	1368	1383	1376	1380	1220	1225	1250	1244
1885	1811	1923	1866	1378	1385	1382	1387	1254	1274	1262	1275
3082	3065	3088	3063	1379	1387	1383	1394	1288	1304	1298	1305
3156	3131	3168	3144	1379	1390	1388	1397	1308	1314	1309	1315
3195	3194	3208	3194	1383	1398	1390	1403	1315	1323	1319	1322
3209	3196	3214	3196	1417	1408	1421	1413	1320	1327	1323	1331

3211	3199	3214	3222	1423	1420	1429	1426	1321	1330	1328	1335
3211	3206	3218	3225	1455	1425	1463	1454	1322	1332	1329	1336
3211	3217	3229	3227	1465	1467	1478	1488	1323	1333	1335	1338
3215	3227	3231	3232	1466	1472	1486	1488	1329	1335	1338	1341
3216	3227	3232	3240	1473	1487	1496	1490	1332	1341	1342	1350
3217	3231	3233	3243	1488	1490	1499	1495	1334	1346	1344	1352
3218	3232	3235	3244	1489	1494	1502	1500	1338	1349	1354	1356
3222	3234	3240	3249	1490	1503	1506	1509	1352	1360	1363	1365
3229	3235	3246	3253	1535	1506	1541	1512	1363	1368	1376	1374
3229	3242	3247	3255	1541	1516	1546	1523	1376	1377	1380	1383
3230	3242	3250	3256	1542	1526	1548	1531	1378	1383	1383	1384
3233	3242	3255	3258	1545	1528	1549	1534	1380	1385	1387	1396
3234	3245	3262	3265	1576	1532	1579	1537	1382	1398	1392	1402
3237	3246	3263	3273	1607	1544	1610	1553	1416	1410	1421	1413
3238	3248	3268	3279	1633	1564	1629	1563	1422	1419	1441	1438
3239	3248	3269	3283	1642	1575	1641	1585	1456	1447	1467	1473
3240	3251	3286	3285	1651	1618	1655	1628	1465	1468	1469	1484
3247	3252	3296	3308	1652	1625	1659	1631	1466	1475	1470	1485
				1662	1628	1664	1633	1467	1483	1484	1488
				1668	1638	1673	1641	1469	1484	1487	1489
				1676	1653	1682	1659	1474	1487	1490	1491
				1677	1654	1684	1662	1484	1489	1492	1494
				1679	1668	1686	1672	1485	1489	1496	1497
				1684	1670	1690	1673	1489	1496	1500	1503
				1694	1679	1698	1676	1496	1497	1505	1508
				1739	1689	1750	1697	1496	1497	1509	1509
				1888	1811	1918	1854	1510	1501	1523	1516
				3082	3071	3115	3101	1510	1508	1530	1522
				3156	3139	3192	3171	1538	1510	1551	1524
				3195	3193	3205	3194	1545	1523	1555	1535
				3207	3200	3209	3195	1563	1531	1568	1541
				3207	3202	3214	3211	1567	1551	1571	1563
				3207	3216	3217	3213	1576	1558	1587	1563
				3210	3216	3218	3218	1606	1560	1612	1568
				3211	3217	3219	3222	1628	1562	1632	1572
				3213	3217	3223	3227	1636	1583	1643	1603
				3213	3223	3223	3232	1641	1607	1646	1612

3213	3223	3225	3234	1647	1613	1651	1618
3213	3224	3228	3234	1655	1620	1662	1635
3216	3225	3228	3237	1667	1638	1675	1638
3221	3230	3230	3237	1676	1655	1689	1663
3222	3230	3233	3241	1683	1657	1691	1667
3222	3231	3235	3242	1686	1667	1692	1673
3223	3232	3236	3246	1689	1675	1695	1681
3228	3233	3239	3250	1695	1681	1703	1687
3228	3237	3239	3252	1739	1689	1750	1706
3229	3238	3246	3255	1887	1807	1919	1861
3229	3240	3246	3260	3045	3058	3050	3068
3231	3242	3247	3260	3045	3059	3064	3074
3234	3243	3254	3261	3083	3068	3102	3084
3236	3243	3255	3266	3120	3135	3128	3152
3236	3244	3261	3270	3120	3140	3143	3154
3236	3244	3267	3273	3156	3141	3179	3163
3249	3246	3281	3279	3185	3192	3181	3194
				3186	3197	3188	3196
				3196	3198	3210	3205
				3205	3198	3220	3215
				3210	3200	3222	3234
				3211	3211	3224	3234
				3212	3217	3231	3237
				3212	3219	3235	3241
				3214	3223	3237	3241
				3217	3224	3240	3247
				3217	3226	3241	3248
				3220	3229	3242	3253
				3222	3231	3248	3254
				3223	3232	3252	3255
				3224	3235	3255	3260
				3227	3235	3257	3260
				3227	3238	3259	3261
				3231	3238	3260	3263
				3233	3241	3263	3265
				3234	3243	3269	32/3
				3235	3243	3215	3285

3237	3244	3282	3300
3248	3248	3300	3303
3249	3256	3331	3340
 3249	3256	3369	3428